Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

The triangle condition for percolation


Authors: Takashi Hara and Gordon Slade
Journal: Bull. Amer. Math. Soc. 21 (1989), 269-273
MSC (1985): Primary 82A43, 60K35
DOI: https://doi.org/10.1090/S0273-0979-1989-15827-8
MathSciNet review: 992514
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Michael Aizenman, Geometric analysis of 𝜑⁴ fields and Ising models. I, II, Comm. Math. Phys. 86 (1982), no. 1, 1–48. MR 678000
  • 2. Michael Aizenman and David J. Barsky, Sharpness of the phase transition in percolation models, Comm. Math. Phys. 108 (1987), no. 3, 489–526. MR 874906
  • 3. M. Aizenman, H. Kesten, and C. M. Newman, Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation, Comm. Math. Phys. 111 (1987), no. 4, 505–531. MR 901151
  • 4. Michael Aizenman and Charles M. Newman, Tree graph inequalities and critical behavior in percolation models, J. Statist. Phys. 36 (1984), no. 1-2, 107–143. MR 762034, https://doi.org/10.1007/BF01015729
  • 5. D. J. Barsky and M. Aizenman, Percolation critical exponents under the triangle condition, Ann. Probab. 19 (1991), no. 4, 1520–1536. MR 1127713
  • 6. J. van den Berg and H. Kesten, Inequalities with applications to percolation and reliability, J. Appl. Probab. 22 (1985), no. 3, 556–569. MR 799280
  • 7. A. Bovier, G. Felder, and J. Fröhlich, On the critical properties of the Edwards and the self-avoiding walk model of polymer chains, Nuclear Phys. B 230 (1984), no. 1, , FS10, 119–147. MR 729794, https://doi.org/10.1016/0550-3213(84)90355-9
  • 8. S. R. Broadbent and J. M. Hammersley, Percolation processes. I. Crystals and mazes, Proc. Cambridge Philos. Soc. 53 (1957), 629-641; J. M. Hammersley: Percolation processes. II. The Connectivity constant, ibid, 642-645. MR 91567
  • 9. David Brydges and Thomas Spencer, Self-avoiding walk in 5 or more dimensions, Comm. Math. Phys. 97 (1985), no. 1-2, 125–148. MR 782962
  • 10. J. T. Chayes and L. Chayes, On the upper critical dimension of Bernoulli percolation, Comm. Math. Phys. 113 (1987), no. 1, 27–48. MR 918403
  • 11. J. M. Hammersley, Bornes supérieures de la probabilité critique dans un processus defiltration, Le Calcul des Probabilités et ses Applications, CNRS, Paris, 1959, pp. 17-37. MR 105751
  • 12. T. Hara, Mean field critical behaviour of correlation length for percolation in high dimensions (in preparation).
  • 13. Takashi Hara and Gordon Slade, The mean-field critical behaviour of percolation in high dimensions, IXth International Congress on Mathematical Physics (Swansea, 1988) Hilger, Bristol, 1989, pp. 450–453. MR 1033813
  • 14. T. Hara and G. Slade, On the upper critical dimension of lattice trees and lattice animals (in preparation).
  • 15. Harry Kesten, Percolation theory and first-passage percolation, Ann. Probab. 15 (1987), no. 4, 1231–1271. MR 905330
  • 16. M. V. Men′shikov, S. A. Molchanov, and A. F. Sidorenko, Percolation theory and some applications, Probability theory. Mathematical statistics. Theoretical cybernetics, Vol. 24 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1986, pp. 53–110, i (Russian). Translated in J. Soviet Math. 42 (1988), no. 4, 1766–1810. MR 865158
  • 17. Bao Gia Nguyen, Gap exponents for percolation processes with triangle condition, J. Statist. Phys. 49 (1987), no. 1-2, 235–243. MR 923855, https://doi.org/10.1007/BF01009960
  • 18. Lucio Russo, On the critical percolation probabilities, Z. Wahrsch. Verw. Gebiete 56 (1981), no. 2, 229–237. MR 618273, https://doi.org/10.1007/BF00535742
  • 19. Gordon Slade, The diffusion of self-avoiding random walk in high dimensions, Comm. Math. Phys. 110 (1987), no. 4, 661–683. MR 895223
  • 20. Dietrich Stauffer, Introduction to percolation theory, Taylor & Francis, Ltd., London, 1985. MR 849782
  • 21. Hal Tasaki, Hyperscaling inequalities for percolation, Comm. Math. Phys. 113 (1987), no. 1, 49–65. MR 918404

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 82A43, 60K35

Retrieve articles in all journals with MSC (1985): 82A43, 60K35


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1989-15827-8

American Mathematical Society