Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

The triangle condition for percolation


Authors: Takashi Hara and Gordon Slade
Journal: Bull. Amer. Math. Soc. 21 (1989), 269-273
MSC (1985): Primary 82A43, 60K35
DOI: https://doi.org/10.1090/S0273-0979-1989-15827-8
MathSciNet review: 992514
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. M. Aizenman, Geometric analysis of φ, Comm. Math. Phys. 86 (1982), 1-48. MR 678000
  • 2. M. Aizenman and D. J. Barsky, Sharpness of the phase transition in percolation models, Comm. Math. Phys. 108 (1987), 489-526. MR 874906
  • 3. M. Aizenman, H. Kesten and C. M. Newman, Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation, Comm. Math. Phys. 111 (1987), 505-531. MR 901151
  • 4. M. Aizenman and C. M. Newman, Tree graph inequalities and critical behaviour in percolation models, J. Statist. Phys. 36 (1984), 107-143. MR 762034
  • 5. D. Barsky and M. Aizenman, Percolation critical exponents under the triangle condition, preprint (1988). MR 1127713
  • 6. J. van den Berg and H. Kesten, Inequalities with applications to percolation and reliability, J. Appl. Prob. 22 (1985), 556-569. MR 799280
  • 7. A. Bovier, G. Felder and J. Fröhlich, On the critical properties of the Edwards and the selfavoiding walk model of polymer chains, Nucl. Phys. B230 [FS210] (1984), 119-147. MR 729794
  • 8. S. R. Broadbent and J. M. Hammersley, Percolation processes. I. Crystals and mazes, Proc. Cambridge Philos. Soc. 53 (1957), 629-641; J. M. Hammersley: Percolation processes. II. The Connectivity constant, ibid, 642-645. MR 91567
  • 9. D. Brydges and T. Spencer, Self-avoiding walk in 5 or more dimensions, Comm. Math. Phys. 97 (1985), 125-148. MR 782962
  • 10. J. T. Chayes and L. Chayes, On the upper critical dimension of Bernoulli percolation, Comm. Math. Phys. 113 (1987), 27-48. MR 918403
  • 11. J. M. Hammersley, Bornes supérieures de la probabilité critique dans un processus defiltration, Le Calcul des Probabilités et ses Applications, CNRS, Paris, 1959, pp. 17-37. MR 105751
  • 12. T. Hara, Mean field critical behaviour of correlation length for percolation in high dimensions (in preparation).
  • 13. T. Hara and G. Slade, Mean field critical phenomena for percolation in high dimensions, preprint (1989). MR 1033813
  • 14. T. Hara and G. Slade, On the upper critical dimension of lattice trees and lattice animals (in preparation).
  • 15. H. Kesten, Percolation theory and first passage percolation, Ann. Probab. 15 (1987), 1231-1271. MR 905330
  • 16. M. V. Menshikov, S. A. Molchanov and A. F. Sidorenko, Percolation theory and some applications, Itogi Nauki i Tekhniki (Series of Probability Theory, Mathematical Statistics, Theoretical Cybernetics) 24 (1986), 53-110; English Translation: J. Soviet Math. 42 (1988), 1766-1810. MR 865158
  • 17. B. G. Nguyen, Gap exponents for percolation processes with triangle condition, J. Statist. Phys. 49 (1987), 235-243. MR 923855
  • 18. L. Russo, On the critical percolation probabilities, Z. Wahrsch. Verw. Gebiete 56 (1981), 229-237. MR 618273
  • 19. G. Slade, The diffusion of self-avoiding random walk in high dimensions, Comm. Math. Phys. 110(1987), 661-683. MR 895223
  • 20. D. Stauffer, Introduction to percolation theory, Taylor and Francis, London and Philadelphia, 1985. MR 849782
  • 21. H. Tasaki, Hyperscaling inequalities for percolation, Comm. Math. Phys. 113 (1987), 49-65. MR 918404

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 82A43, 60K35

Retrieve articles in all journals with MSC (1985): 82A43, 60K35


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1989-15827-8

American Mathematical Society