Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Matti Vuorinen
Title: Conformal geometry and quasiregular mappings
Additional book information: Lecture Notes in Mathematics, vol. 1319, Springer-Verlag, Berlin, Heidelberg, New York, 1988, xix + 209 pp., $21.20. ISBN 3-540-19342-1.

References [Enhancements On Off] (What's this?)

  • Lars V. Ahlfors, Lectures on quasiconformal mappings, 2nd ed., University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. MR 2241787
  • [A2] L. Ahlfors, Finitely generated Kleinian groups, Amer. J. Math. 86 (1964), 413-429. MR 167618
  • Lars V. Ahlfors, Quasiconformal mappings, Teichmüller spaces, and Kleinian groups, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 71–84. MR 562598
  • Kari Astala, A remark on quasiconformal mappings and BMO-functions, Michigan Math. J. 30 (1983), no. 2, 209–212. MR 718266, https://doi.org/10.1307/mmj/1029002851
  • Albert Baernstein II and Juan J. Manfredi, Topics in quasiconformal mapping, Topics in modern harmonic analysis, Vol. I, II (Turin/Milan, 1982) Ist. Naz. Alta Mat. Francesco Severi, Rome, 1983, pp. 819–862. MR 748884
  • [B1] L. Bers, Uniformization by Beltrami equations, Comm. Pure Appl. Math. 14 (1961), 215-228. MR 132175
  • [B2] L. Bers, An extremal problem for quasiconformal mappings and a problem of Thurston, Acta Math. 141 (1978), 73-98. MR 477161
  • [B3] L. Bers, Uniformization, moduli, and Kleinian groups, Bull. London Math. Soc. 4 (1972), 257-300. MR 348097
  • [B4] L. Bers, Quasiconformal mappings, with applications to differential equations, function theory and topology, Bull. Amer. Math. Soc. 83 (1977), 1083-1100. MR 463433
  • Lipman Bers, Finite-dimensional Teichmüller spaces and generalizations, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 131–172. MR 621883, https://doi.org/10.1090/S0273-0979-1981-14933-8
  • [BA] A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142. MR 86869
  • [Bo] B. Bojarski, Generalized solutions of a system of first order differential equations of elliptic type with discontinuous coefficients, Mat. Sb. 43 (1957), 451-503 (Russian). MR 106324
  • B. Bojarski and T. Iwaniec, Another approach to Liouville theorem, Math. Nachr. 107 (1982), 253–262. MR 695751, https://doi.org/10.1002/mana.19821070120
  • B. Bojarski and T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in 𝑅ⁿ, Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), no. 2, 257–324. MR 731786, https://doi.org/10.5186/aasfm.1983.0806
  • [D] D. Drasin, The inverse problem of the Nevanlinna theory, Acta Math. 138 (1977), 83-151. MR 585644
  • [EE] C. Earle and J. Eells, A fibre bundle description of Teichmüller theory, J. Differential Geom. 3 (1969), 19-43. MR 276999
  • [Ga] I. Gál, Conformally invariant metrics and uniform structures, Indag. Math. 22 (1960), 218-244. MR 118828
  • [G1] F. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 101 (1961), 499-519. MR 125964
  • [G2] F. Gehring, The L, Acta Math. 130 (1973), 265-277. MR 402038
  • Mariano Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies, vol. 105, Princeton University Press, Princeton, NJ, 1983. MR 717034
  • Mariano Giaquinta and Enrico Giusti, On the regularity of the minima of variational integrals, Acta Math. 148 (1982), 31–46. MR 666107, https://doi.org/10.1007/BF02392725
  • David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190
  • S. Granlund, P. Lindqvist, and O. Martio, Conformally invariant variational integrals, Trans. Amer. Math. Soc. 277 (1983), no. 1, 43–73. MR 690040, https://doi.org/10.1090/S0002-9947-1983-0690040-4
  • S. Granlund, P. Lindqvist, and O. Martio, 𝐹-harmonic measure in space, Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (1982), no. 2, 233–247. MR 686642, https://doi.org/10.5186/aasfm.1982.0717
  • S. Granlund, P. Lindqvist, and O. Martio, Note on the PWB-method in the nonlinear case, Pacific J. Math. 125 (1986), no. 2, 381–395. MR 863533
  • S. Granlund, P. Lindqvist, and O. Martio, Phragmén-Lindelöf’s and Lindelöf’s theorems, Ark. Mat. 23 (1985), no. 1, 103–128. MR 800175, https://doi.org/10.1007/BF02384420
  • Irwin Kra, On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces, Acta Math. 146 (1981), no. 3-4, 231–270. MR 611385, https://doi.org/10.1007/BF02392465
  • [LF1] J. Lelong-Ferrand, Transformations conformes et quasi-conformes des variétés riemanniennes compactes (Démonstration de la conjecture de A. Lichnerowicz), Acad. Roy. Belg. Cl. Sci. Mém. Coll. 39 (1971), 1-44. MR 322739
  • [LF2] J. Lelong-Ferrand, Invariants conformes globaux sur les variétés riemanniennes, J. Differential Geom. 8 (1973), 487-510. MR 346702
  • Olli Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR 867407
  • Olli Lehto, A historical survey of quasiconformal mappings, On the work of Leonhard Euler (Berlin, 1983) Birkhäuser, Basel, 1984, pp. 205–217. MR 753330
  • P. Lindqvist and O. Martio, Two theorems of N. Wiener for solutions of quasilinear elliptic equations, Acta Math. 155 (1985), no. 3-4, 153–171. MR 806413, https://doi.org/10.1007/BF02392541
  • [LV] O. Lehto and K. Virtanen, Quasi-conformal mappings in the plane, 2nd ed., Springer-Verlag, Berlin and New York, 1973. MR 344463
  • [MaR] A. Marden and S. Rickman, Holomorphic mappings of a bounded distortion, Proc. Amer. Math. Soc. 46 (1974), 226-228. MR 348146
  • [MR] A. Marden and S. Rickman, Measure properties of the branch set and its image of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 541 (1973), 1-16. MR 352453
  • [MRV1] O. Martio, S. Rickman and J. Väisälä, Definitions for quasi-regular mappings, Ann. Acad. Sci. Fenn. Ser A I 465 (1970), 1-13. MR 267093
  • [MRV2] O. Martio, S. Rickman and J. Väisälä, Distorsion and singularities of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser A I 465 (1970), 1-13. MR 267093
  • [MRV3] O. Martio, S. Rickman and J. Väisälä, Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn Ser A I 488 (1971), 1-31. MR 299782
  • [M] G. Mostow, Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Publ. Math. Inst. Hautes Études Sci. 34 (1968), 53-104. MR 236383
  • [R1] J. Rešetnjak, The Liouville theorem with minimal regularity conditions, Sibirsk. Mat. Z. 8 (1967), 835-840. MR 218544
  • [R2] J. Rešetnjak, Space mappings with bounded distortion, Sibirsk. Mat. Z. 8 (1967), 629-658. (Russian) MR 215990
  • [R3] J. Rešetnjak, Mappings with bounded distortion as extremals of Dirichlet type integrals, Sibirsk. Mat. Z. 9 (1968), 652-666. (Russian) MR 230900
  • Yu. G. Reshetnyak, \cyr Prostranstvennye otobrazheniya s ogranichennym iskazheniem, “Nauka” Sibirsk. Otdel., Novosibirsk, 1982 (Russian). MR 665590
  • Seppo Rickman, A defect relation for quasimeromorphic mappings, Ann. of Math. (2) 114 (1981), no. 1, 165–191. MR 625350, https://doi.org/10.2307/1971382
  • Seppo Rickman, The analogue of Picard’s theorem for quasiregular mappings in dimension three, Acta Math. 154 (1985), no. 3-4, 195–242. MR 781587, https://doi.org/10.1007/BF02392472
  • [RR] H. Reiman and T. Rychener, Funktionen mit beschränkter mittlerer Oszillation, Lecture Notes in Math., vol. 487, Springer-Verlag, Berlin and New York, 1975. MR 511997
  • Dennis Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), no. 3, 401–418. MR 819553, https://doi.org/10.2307/1971308
  • [V1] J. Väisälä, On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. 298 (1961), 1-36. MR 140685
  • [V2] J. Väisälä, Quasiregular mappings in n-space, XVI, Scandinavian Congress of Mathematicians, Göteburg, Sweden, 1972.
  • [V3] J. Väisälä, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Math., vol. 229, Springer-Verlag, Berlin and New York, 1971. MR 454009
  • [Z] V. A. Zǒric, The theorem of M. A. Laurentiev on quasiconformal mappings in space, Mat. Sb. 74 (1967), 417-433. (Russian) MR 223569

Review Information:

Reviewer: Juan J. Manfredi
Journal: Bull. Amer. Math. Soc. 21 (1989), 354-360
DOI: https://doi.org/10.1090/S0273-0979-1989-15860-6
American Mathematical Society