The classification of nonlinear similarities over ${\text{Z}}_{2^r }$
Authors:
Sylvain E. Cappell, Julius L. Shaneson, Mark Steinberger, Shmuel Weinberger and James E. West
Journal:
Bull. Amer. Math. Soc. 22 (1990), 5157
MSC (1985):
Primary 57S17, 57S25, 57N17; Secondary 20C99, 58F10, 58F19
MathSciNet review:
1003861
Fulltext PDF
References  Similar Articles  Additional Information
 Sylvain E. Cappell and Julius L. Shaneson, Nonlinear similarity, Ann. of Math. (2) 113 (1981), no. 2, 315–355. MR 607895, 10.2307/2006986

[CS_{2}] S. E. Cappell and J. L. Shaneson, Nonlinear similarity and linear similarity are equivalent below dimension six(to appear).
 Sylvain E. Cappell and Julius L. Shaneson, Torsion in 𝐿groups, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 22–50. MR 802784, 10.1007/BFb0074437
 Sylvain E. Cappell and Julius L. Shaneson, The topological rationality of linear representations, Inst. Hautes Études Sci. Publ. Math. 56 (1982), 101–128 (1983). MR 686043
 Sylvain E. Cappell and Julius L. Shaneson, Fixed points of periodic differentiable maps, Invent. Math. 68 (1982), no. 1, 1–19. MR 666635, 10.1007/BF01394267

[CS_{6}] S. E. Cappell and J. L. Shaneson, Determinants of εsymmetric forms over Z[Z_{2}r] (to appear).
 Sylvain E. Cappell, Julius L. Shaneson, Mark Steinberger, and James E. West, Nonlinear similarity begins in dimension six, Amer. J. Math. 111 (1989), no. 5, 717–752. MR 1020826, 10.2307/2374878

[CSW] S. E. Cappell, J. L. Shaneson and S. Weinberger, A topological equivariant signature theorem for singular varieties (to appear).

[dR] G. de Rham, Moscow Topology Conference, 1934.
 W. C. Hsiang and William Pardon, When are topologically equivalent orthogonal transformations linearly equivalent?, Invent. Math. 68 (1982), no. 2, 275–316. MR 666164, 10.1007/BF01394060

[MR] I. Madsen and M. Rothenberg, On the classification of Gspheres. I—III, preprints.

[MRS] I. Madsen, M. Rothenberg, and M. Steinberger, Locally linear Gsurgery (to appear).
 J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426. MR 0196736, 10.1090/S000299041966114842

[M] W. Mio, Thesis, NYU.

[RoseW] J. Rosenberg and S. Weinberger, Higher Gindices of smooth and Lipschitz manifolds and their applications, (to appear).
 Mel Rothenberg and Shmuel Weinberger, Group actions and equivariant Lipschitz analysis, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 109–112. MR 888883, 10.1090/S02730979198715525X
 Reinhard Schultz, On the topological classification of linear representations, Topology 16 (1977), no. 3, 263–269. MR 0500964
 Mark Steinberger, The equivariant topological 𝑠cobordism theorem, Invent. Math. 91 (1988), no. 1, 61–104. MR 918237, 10.1007/BF01404913
 Mark Steinberger and James West, Approximation by equivariant homeomorphisms. I, Trans. Amer. Math. Soc. 302 (1987), no. 1, 297–317. MR 887511, 10.1090/S00029947198708875118

[SW_{2}] M. Steinberger and J. E. West, Controlled finiteness is the obstruction to equivariant handle decomposition (to appear).
 C. T. C. Wall, Classification of Hermitian Forms. VI. Group rings, Ann. of Math. (2) 103 (1976), no. 1, 1–80. MR 0432737
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 57S17, 57S25, 57N17, 20C99, 58F10, 58F19
Retrieve articles in all journals with MSC (1985): 57S17, 57S25, 57N17, 20C99, 58F10, 58F19
Additional Information
DOI:
https://doi.org/10.1090/S027309791990158379