Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

The classification of nonlinear similarities over ${\text{Z}}_{2^r }$


Authors: Sylvain E. Cappell, Julius L. Shaneson, Mark Steinberger, Shmuel Weinberger and James E. West
Journal: Bull. Amer. Math. Soc. 22 (1990), 51-57
MSC (1985): Primary 57S17, 57S25, 57N17; Secondary 20C99, 58F10, 58F19
DOI: https://doi.org/10.1090/S0273-0979-1990-15837-9
MathSciNet review: 1003861
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [CS1] S. E. Cappell and J. L. Shaneson, Non-linear similarity, Ann. of Math. (2) 113(1981), 315-355. MR 607895
  • [CS2] S. E. Cappell and J. L. Shaneson, Non-linear similarity and linear similarity are equivalent below dimension six(to appear).
  • [CS3] S. E. Cappell and J. L. Shaneson, Torsion in L-groups, Lecture Notes in Math., vol. 1126, Springer-Verlag, Berlin and New York, 1985, pp. 22-50. MR 802784
  • [CS4] S. E. Cappell and J. L. Shaneson, The topological rationality of linear representations, Inst. Hautes Études Sci. Publ. Math. 56 (1983), 309-336. MR 686043
  • [CS5] S. E. Cappell and J. L. Shaneson, Fixed points of periodic differentiable maps, Invent. Math. 68 (1982), 1-19. MR 666635
  • [CS6] S. E. Cappell and J. L. Shaneson, Determinants of ε-symmetric forms over Z[Z2r] (to appear).
  • [CSSW] S. E. Cappell, J. L. Shaneson, M. Steinberger and J. E. West, Non-linear similarity begins in dimension six, Amer. J. Math., 1989 (to appear). MR 1020826
  • [CSW] S. E. Cappell, J. L. Shaneson and S. Weinberger, A topological equivariant signature theorem for singular varieties (to appear).
  • [dR] G. de Rham, Moscow Topology Conference, 1934.
  • [HP] W.-C. Hsiang and W. Pardon, When are topologically equivalent orthogonal transformations linearly equivalent? Invent. Math. 68 (1982), 275-316. MR 666164
  • [MR] I. Madsen and M. Rothenberg, On the classification of G-spheres. I—III, preprints.
  • [MRS] I. Madsen, M. Rothenberg, and M. Steinberger, Locally linear G-surgery (to appear).
  • [Mi] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358-426. MR 196736
  • [M] W. Mio, Thesis, NYU.
  • [RoseW] J. Rosenberg and S. Weinberger, Higher G-indices of smooth and Lipschitz manifolds and their applications, (to appear).
  • [RothW] J. Rosenberg and S. Weinberger, Group actions and equivariant Lipschitz analysis, Bull. Amer. Math. Soc. (N.S.) 17 (1987), 109-112. MR 888883
  • [Sch] R. Schultz, On the topological classification of linear representations, Topology 16 (1977), 263-270. MR 500964
  • [S] M. Steinberger, The equivariant topological s-cobordism theorem, Invent. Math. 91 (1988), 61-104. MR 918237
  • [SW1] M. Steinberger and J. E. West, Approximation by equivariant homeomorphisms. I, Trans. Amer. Math. Soc. 301 (1987), 1-21. MR 887511
  • [SW2] M. Steinberger and J. E. West, Controlled finiteness is the obstruction to equivariant handle decomposition (to appear).
  • [W] C. T. C. Wall, Classification of Hermitian forms: VI Group rings, Ann. of Math. (2) 103(1976), 1-80. MR 432737

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 57S17, 57S25, 57N17, 20C99, 58F10, 58F19

Retrieve articles in all journals with MSC (1985): 57S17, 57S25, 57N17, 20C99, 58F10, 58F19


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1990-15837-9

American Mathematical Society