The classification of nonlinear similarities over ${\text{Z}}_{2^r }$
Authors:
Sylvain E. Cappell, Julius L. Shaneson, Mark Steinberger, Shmuel Weinberger and James E. West
Journal:
Bull. Amer. Math. Soc. 22 (1990), 5157
MSC (1985):
Primary 57S17, 57S25, 57N17; Secondary 20C99, 58F10, 58F19
DOI:
https://doi.org/10.1090/S027309791990158379
MathSciNet review:
1003861
Fulltext PDF
References  Similar Articles  Additional Information

[CS_{1}] S. E. Cappell and J. L. Shaneson, Nonlinear similarity, Ann. of Math. (2) 113(1981), 315355. MR 607895

[CS_{2}] S. E. Cappell and J. L. Shaneson, Nonlinear similarity and linear similarity are equivalent below dimension six(to appear).

[CS_{3}] S. E. Cappell and J. L. Shaneson, Torsion in Lgroups, Lecture Notes in Math., vol. 1126, SpringerVerlag, Berlin and New York, 1985, pp. 2250. MR 802784

[CS_{4}] S. E. Cappell and J. L. Shaneson, The topological rationality of linear representations, Inst. Hautes Études Sci. Publ. Math. 56 (1983), 309336. MR 686043

[CS_{5}] S. E. Cappell and J. L. Shaneson, Fixed points of periodic differentiable maps, Invent. Math. 68 (1982), 119. MR 666635

[CS_{6}] S. E. Cappell and J. L. Shaneson, Determinants of εsymmetric forms over Z[Z_{2}r] (to appear).

[CSSW] S. E. Cappell, J. L. Shaneson, M. Steinberger and J. E. West, Nonlinear similarity begins in dimension six, Amer. J. Math., 1989 (to appear). MR 1020826

[CSW] S. E. Cappell, J. L. Shaneson and S. Weinberger, A topological equivariant signature theorem for singular varieties (to appear).

[dR] G. de Rham, Moscow Topology Conference, 1934.

[HP] W.C. Hsiang and W. Pardon, When are topologically equivalent orthogonal transformations linearly equivalent? Invent. Math. 68 (1982), 275316. MR 666164

[MR] I. Madsen and M. Rothenberg, On the classification of Gspheres. I—III, preprints.

[MRS] I. Madsen, M. Rothenberg, and M. Steinberger, Locally linear Gsurgery (to appear).

[Mi] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358426. MR 196736

[M] W. Mio, Thesis, NYU.

[RoseW] J. Rosenberg and S. Weinberger, Higher Gindices of smooth and Lipschitz manifolds and their applications, (to appear).

[RothW] J. Rosenberg and S. Weinberger, Group actions and equivariant Lipschitz analysis, Bull. Amer. Math. Soc. (N.S.) 17 (1987), 109112. MR 888883

[Sch] R. Schultz, On the topological classification of linear representations, Topology 16 (1977), 263270. MR 500964

[S] M. Steinberger, The equivariant topological scobordism theorem, Invent. Math. 91 (1988), 61104. MR 918237

[SW_{1}] M. Steinberger and J. E. West, Approximation by equivariant homeomorphisms. I, Trans. Amer. Math. Soc. 301 (1987), 121. MR 887511

[SW_{2}] M. Steinberger and J. E. West, Controlled finiteness is the obstruction to equivariant handle decomposition (to appear).

[W] C. T. C. Wall, Classification of Hermitian forms: VI Group rings, Ann. of Math. (2) 103(1976), 180. MR 432737
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 57S17, 57S25, 57N17, 20C99, 58F10, 58F19
Retrieve articles in all journals with MSC (1985): 57S17, 57S25, 57N17, 20C99, 58F10, 58F19
Additional Information
DOI:
https://doi.org/10.1090/S027309791990158379