Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)


Symmetry breaking in equivariant bifurcation problems

Authors: M. J. Field and R.W. Richardson
Journal: Bull. Amer. Math. Soc. 22 (1990), 79-84
MSC (1985): Primary 58F14, 58F10
MathSciNet review: 1006282
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • Mike Field, Equivariant bifurcation theory and symmetry breaking, J. Dynam. Differential Equations 1 (1989), no. 4, 369–421. MR 1020711 (90j:58109),
  • M. J. Field and R. W. Richardson, Symmetry breaking and the maximal isotropy subgroup conjecture for reflection groups, Arch. Rational Mech. Anal. 105 (1989), no. 1, 61–94. MR 963908 (89m:58153),
  • Martin Golubitsky, The Bénard problem, symmetry and the lattice of isotropy subgroups, Bifurcation theory, mechanics and physics, Math. Appl., Reidel, Dordrecht, 1983, pp. 225–256. MR 726253 (85k:58059)
  • [GGS] M. Golubitsky, D. Schaefer and I. Stewart, Singularities and groups in bifurcation theory, Vol. 2, Applied Mathematical Sciences 69, Springer-Verlag, New York-Berlin-Heidelberg, 1988.
  • [M] L. Michel, Minima of Higgs Landau polynomials, Regards sur la Physique contemporaine (1980), 157-203, Edition CNRS, Paris, 1980.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 58F14, 58F10

Retrieve articles in all journals with MSC (1985): 58F14, 58F10

Additional Information

PII: S 0273-0979(1990)15846-X

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia