Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Accurate strategies for small divisor problems


Authors: R. de la Llave and David Rana
Journal: Bull. Amer. Math. Soc. 22 (1990), 85-90
MSC (1985): Primary 39-04, 39B99, 70K50, 58F27; Secondary 65J15, 30D05, 58F30, 58F10
DOI: https://doi.org/10.1090/S0273-0979-1990-15848-3
MathSciNet review: 1008096
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • V. I. Arnol′d, Geometrical methods in the theory of ordinary differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 250, Springer-Verlag, New York-Berlin, 1983. Translated from the Russian by Joseph Szücs; Translation edited by Mark Levi. MR 695786
  • Alessandra Celletti and Luigi Chierchia, Construction of analytic KAM surfaces and effective stability bounds, Comm. Math. Phys. 118 (1988), no. 1, 119–161. MR 954678
  • D. Braess and E. Zehnder, On the numerical treatment of a small divisor problem, Numer. Math. 39 (1982), no. 2, 269–292. MR 669322, https://doi.org/10.1007/BF01408700
  • Oscar E. Lanford III, Computer-assisted proofs in analysis, Phys. A 124 (1984), no. 1-3, 465–470. Mathematical physics, VII (Boulder, Colo., 1983). MR 759197, https://doi.org/10.1016/0378-4371(84)90262-0
  • C. Liverani, G. Servizi, and G. Turchetti, Some KAM estimates for the Siegel centre problem, Lett. Nuovo Cimento (2) 39 (1984), no. 17, 417–423. MR 746559
  • Ramon E. Moore, Methods and applications of interval analysis, SIAM Studies in Applied Mathematics, vol. 2, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1979. MR 551212
  • [Mo] J. Moser, Is the solar system stable?, Math. Intelligencer 1 (1978), 65-71. MR 495314
  • R. S. MacKay and I. C. Percival, Converse KAM: theory and practice, Comm. Math. Phys. 98 (1985), no. 4, 469–512. MR 789867
  • [R] D. Rana, Proof of accurate upper and lower bounds to stability domains in small denominator problems, Thesis, Prinecton Univ., 1987.
  • J. Stark, An exhaustive criterion for the nonexistence of invariant circles for area-preserving twist maps, Comm. Math. Phys. 117 (1988), no. 2, 177–189. MR 946999
  • [Z] E. Zehnder, Generalized implicit function theorems and applications to some small divisor problems, Comm. Pure Appl. Math. 28 (1975), 91-140; 29 (1975), 49-111. MR 380867

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 39-04, 39B99, 70K50, 58F27, 65J15, 30D05, 58F30, 58F10

Retrieve articles in all journals with MSC (1985): 39-04, 39B99, 70K50, 58F27, 65J15, 30D05, 58F30, 58F10


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1990-15848-3

American Mathematical Society