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The dynamical systems encountered in physical or biological 
sciences can be grouped roughly into two classes: the conserva
tive ones (including the Hamiltonian systems) and those exhibit
ing some type of dissipation. These dynamical systems are often 
generated by partial differential equations and thus the underlying 
state space is infinite dimensional. 

I. It is natural to expect that the flow defined by a dissipative 
system shall be simpler than the one of a conservative system. It is 
perhaps even possible to isolate an interesting class of systems for 
which one can adapt several ideas coming from the ordinary differ
ential equations (O.D.E's) to the analysis of the flow. If this can be 
done, then one must overcome the difficulties that arise due to the 
nonlocal compactness of the state space. This will require some 
type of "smoothing" property of the dynamical system. There are 
also problems that can arise at infinity due to the unboundedness 
of the space. This problem is avoided by imposing specific dissipa
tive conditions. To make the discussion more meaningful and to 
motivate the class of systems considered in the book under review, 
it is instructive to recall the situation for the ordinary differential 
equations. 

In his study of the forced van der Pol equation, Levinson [13] 
introduced the concept "point dissipative." To keep the techni
cality at a minimum, let us discuss at first discrete dynamical 
systems; that is, those defined by a map T : Rn -» Rn . The 
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map T is point dissipative if there exists a bounded set B such 
that, for each x e Rn, there is an integer n0 = n0(x, B) such 
that Tnx e B for n > n0. If T is point dissipative, then 
due to the local compactness of Rn, it is easy to show that T 
is bounded dissipative (equivalently, uniformly ultimately bounded 
or else there exists an absorbing set), that is, there is a bounded 
set B such that, for any bounded set U, one can find an inte
ger n0(U9 B) such that TnU c B for n > n0(U, B). For any 
bounded set B of R", we define the co-limit set co(B) of B as 
co(B) = n„>oc l(Uy=i TJ(B)). If r̂ is bounded dissipative, then 
the local compactness of Rn implies that co(B) is compact and 
invariant for any bounded set B of R" (i.e. Tco(B) = co(B)). 
Therefore, if T is bounded dissipative and if we choose for B 
a ball of large enough radius, then co(B) = stf is the global at-
tractor, that is, $f is compact, invariant and SRn(TnU, s/) —• 0 
as n —• +00 for any bounded set U where dRn(TnU, &7) = 
suPxeT"u ir^ye^ Wx ~~ y HR" • Note that this definition of the global 
attractor implies that sf is maximal with respect to inclusion and 
hence unique. Thus, point dissipativness implies the existence of 
a global attractor (see Pliss [17]). This allows one to reduce the 
discussion to sf . Of course, if T is a mapping from M into M 
where M is a compact manifold without boundary, st — M (by 
uniqueness) and then nothing is gained. 

Is it possible to have properties similar to the ones mentioned 
above for dynamical systems on Rn valid for an interesting class 
of dynamical systems on a Banach space X ? To overcome the 
part of the difficulties at infinity, it is natural to require point dis-
sipativeness as one of the fundamental properties. Unfortunately, 
due to the nonlocal compactness in infinite dimension, there are 
examples in which point dissipative does not imply that the orbits 
of bounded sets are bounded; where point dissipative and orbits of 
bounded sets are bounded does not imply bounded dissipative and 
where bounded dissipative does not imply that co(B) is compact 
and invariant, if B is bounded. A counterexample to the latter im
plication can be constructed, for instance, for a wave equation, in 
which the damping p{u)ut, with p(u) continuous and bounded, 
satisfies /?(w) = 0 for \u\ < r0 and fi{u) = fi0 for \u\ > 2r0, 
where r0 is a positive constant. 

Thus, to have a theory comparable to the one for O.D.E's, one 
must impose a type of smoothing property on the operator T. 

If some iterate of T is compact, Billotti and LaSalle [3] proved 
that point dissipative implies bounded dissipative which in turn 
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implies the existence of a global attractor. Ladyzhenskaya [11, 
12] has observed a similar result in the study of the Navier-Stokes 
equations on a bounded domain of R . 

If no iterate of T is compact, then the desired smoothing prop
erty is not clear. However it can be motivated in the following way. 
The orbits of bounded sets being bounded should be something 
that is observed about the system without reference to smoothing 
properties of T. Therefore we can ask the two following ques
tions: 

1. If the system is point dissipative and the orbits of bounded 
sets are bounded, which conditions on T are needed to have 
bounded dissipativeness? 

2. What conditions on T do imply that the cu-limit set co(B) 
is compact if the positive orbit y*(B) — Un>o TnB is bounded? 

A local version of question 1 is related to a basic problem in 
stability theory of compact invariant sets. Let J be an invariant 
set; the set / is stable if, for any neighbourhood U of / , there 
is a neighbourhood V of J such that Tn V c U for all n > 0. 
The set / attracts points locally if there is a neighbourhood W 
of / such that J attracts the points of W (We recall that J 
attracts a set C under T if, for any e > 0, there is an integer 
nQ = n0(e, J, C) such that TnC belongs to the e-neighbourhood 
^X(J, e) of J in X for n > n0.) Finally the set / is asymp
totically stable (a.s.) if / is stable and attracts points locally; the 
set / is uniformly asymptotically stable (u.a.s.) if / is stable 
and attracts a neighbourhood of / . If / is a compact invari
ant set, which conditions on T will imply that the properties of 
a.s. and u.a.s. for / are equivalent? A careful analysis of this 
question (see [7, Chapter 1]) leads naturally to the introduction of 
asymptotically smooth maps. A continuous mapping T : X —• X 
is asymptotically smooth, if for any nonempty closed bounded set 
B c X, there is a nonempty compact set / = J(B) c X such that 
J(B) attracts the set L(B) = {xeB\ Tnx e B, n > 0} . 

One can prove the following results. If T is asymptotically 
smooth, point dissipative and if the orbit of any bounded set is 
bounded, then T is bounded dissipative. Furthermore, if T is 
asymptotically smooth and B is a nonempty bounded set such 
that the positive orbit y+(B) is bounded, then co(B) is nonempty, 
compact, invariant and attracts B. These properties lead us to the 
following existence theorem. 

If T is asymptotically smooth, point dissipative and the orbits of 
bounded sets are bounded, there exists a connected global attractor 
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Completely continuous maps are asymptotically smooth. An
other example is given as follows: if, for each integer n, Tn is 
equal to Sn + Un where Un is completely continuous and, for any 
r > 0, there is a constant k(n, r) (with k(n, r) —• 0 as « —• +oo) 
such that HŜ xlljr < k(n,r) if H-xĤ  < r, then T is asymp
totically smooth. More generally, conditional /^-contractions are 
asymptotically smooth. We recall that a continuous map T : X —• 
X is a conditional ^-contraction of order k, 0 < k < I, with re
spect to the measure of noncompactness P if P{TB) < k/i(B) for 
any bounded set B c X for which T5 is bounded. The class of 
asymptotically smooth mappings contains many of the important 
dissipative dynamical systems encountered in the sciences. For in
stance, the time one map of the flow generated by certain damped 
wave equations is asymptotically smooth. 

The above concepts of course apply equally well to the continu
ous dynamical systems, i.e., to the C°-semigroups T(t) : X -+ X, 
t > 0. Usually the backward initial value problem is not well 
posed for infinite dimensional C -semigroups. But, as the attrac-
tor sf contains only complete orbits, the backward existence of 
solutions is ensured, so it remains to study the question of back
ward uniqueness of solutions on the attractor. For many partial 
differential equations (P.D.E.'s), this backward uniqueness on the 
attractor is true, while the class of functional differential equa
tions (F.D.E's) for which backward uniqueness is valid is not well 
understood. 

Although the above theorem is a powerful tool, in general, it is 
not obvious to show that an infinite dimensional dynamical system 
admits a global attractor. For instance, in the case of P.D.E's, one 
must prove at first that the equation generates a C°-semigroup (a 
nontrivial fact in general). For several P.D.E.'s, one shows directly 
that the system is bounded dissipative by using a priori estimates 
(e.g. energy methods). 

II. If a global attractor s# exists, then any orbit will enter and 
remain in a small neighbourhood of sf after a finite time. This 
does not mean that the transient behavior in a neighbourhood of 
s# is unimportant. One expects that it will be reflected by the flow 
on sf . However this question has not received much attention 
in the literature. Of course, the flow on $f can be extremely 
complicated because of the geometrical or topological structure of 
sf as well as the dimension of sf (Hausdorff dimension, fractal 
dimension or capacity). 

The property of finite dimensionality of attractors was first 
proved by Mallet-Paret [14] for a general class of equations on 
a Hubert space with an application to delay equations. Later, 
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Foias, and Temam [5] proved the finite dimensionality of the at
tractor for the two-dimensional Navier-Stokes equations and also 
gave estimates of its dimension. There is a very general result 
due to Mané [16]. If X is a Banach space, T : X —• X is an 
a-contraction (where a is the Kuratowski measure of noncom-
pactness), point dissipative and the orbits of bounded sets are 
bounded, then the capacity c(sf) is finite (since the Hausdorff di
mension dH(sf) is less or equal to c{sf), this implies that dH{sf) 
is also finite). Moreover, if S is any linear subspace of X with 
dim S >2dH(s/) + l9 there is a residual set II of the space of all 
continuous projections P of X onto S such that Pjsf is one-to-
one for P in n . This means that sf can be parametrized by at 
most 2dH(sf) + 1 parameters. In [8, Hale, Magalhâes, and Oliva, 
Theorem 6.8], there is also a result of existence of retarded func
tional differential equations (R.F.D.E.'s) the attractors of which 
have infinite Hausdorff dimension. 

If sf has finite Hausdorff dimension, the result of Mané says 
that sf can be described by a finite number of parameters. From 
the point of view of understanding the flow on sf , it is natu
ral to ask the following question: is the flow on the attractor sf 
equivalent to the flow defined by a finite dimensional vector field? 
Even better, does the attractor belong to a positive invariant fi
nite dimensional submanifold of the space? Such manifolds are 
called inertial manifolds and have been introduced in [4, 15], for 
reaction-diffusion equations primarily. Unfortunately, due to the 
techniques of construction of such manifolds (they use a gap prop
erty of the linear operator of the equation), up to now, only a few 
dissipative P.D.E.'s seem to have an inertial manifold. (The above 
topics are also mentioned in [6], for instance.) 

For P.D.E.'s, there is almost no literature on the geometry of 
sf . For example, can sf be a smooth manifold? For F.D.E.'s, 
there is some positive information about this question in [8]. There 
is a class of continuous dynamical systems for which one can de
scribe the attractor in a more precise way; namely, the class of 
gradient systems. A gradient system on a Banach space X is de
fined to be a semigroup T(t), t > 0, on X, for which there 
is a Lyapunov function. A continuous function V : X —• R is 
said to be a Lyapunov function for T(t) if V{<p) is bounded be
low, if V{cp) -* +oo as \\cp\\x -• +00, V{T(t)<p) < V{cp) for all 
t > O, <p e X and if V(T(t)<p) = V{<p) for all t implies that 
q> is an equilibrium point. If a gradient system has an attractor 
sf, then sf = WU{E) = {x € X\ T{t)x is defined for t < 0 
and T(t)x -» E as t —• *-oo} , where E is the set of equilibrium 
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points. Moreover if each element of E is hyperbolic, E is finite 
of say N0 points, and 

* = U wU^j) 
<PjeE,i<j<N0 

= (J {xeX; T{t)x is defined for t < 0 
i<j<N0 

and T(t)x —• (p. as t —• -cx>}. 

In numerous cases, the unstable sets Wu{(pj) are embedded 
submanifolds of X and one can give a Morse decomposition of 
s/ . This is well described in [2, Babin, Vishik] as well as in the 
book under review. 

One also can consider, for instance, a family of C°-semigroups 
Tx(t) depending on a parameter X —• 0 or, more generally, a 
family of perturbations Tk(t) which converge in some sense to 
TQ(t). These perturbations can represent some variations of pa
rameters in the equations, discretizations in space and time of 
P.D.E.'s etc... One can try to mimic what happens in finite dimen
sion for O.D.E.'s and study the question of structural stability. Of 
course, due to the lack of local compactness in infinite dimension, 
we can expect to have stability results (with respect to perturba
tions) only on the attractors s/x. And one can ask how s/À de
pends on X. We say that sfÀ is upper-semicontinuous at X = 0 if 
Sx(s/X, s/0) -» 0 as X —• 0, where, for any two subsets A, B of 
X, SX(A, B) = supxeA infy€5 ||JC -y\\x • We say that sfk is lower-
semicontinuous at X — 0 if ôx(£/Q, i^) —• 0 as X —• 0 and that 
J^ is continuous at X = 0 if it is upper- and lower-semicontinuous 
at X = 0. For instance, if the semigroup Tx(t) has the property 
that Tk{t)x is continuous in (t, x, X), the continuity in X being 
uniform with respect to t, x in bounded sets, then the attractors 
srfk are upper-semicontinuous at X = 0. Due to the strong sta
bility properties of the attractors srfx, this upper-semicontinuity 
result remains true when the dependence of the semigroup in X 
is worse. Even in the case of O.D.E.'s, lower-semicontinuity may 
not hold if X = 0 is a bifurcation point. In the case of gradient 
systems, there exists a general result of lower-semicontinuity of sfk 

at X = 0, provided all the equilibrium points are hyperbolic [9]. 
By adapting the techniques used in finite dimension, it is proved 

in [8, Hale, Magalhâes and Oliva] that if T0(i) has an attractor 
$fQ and is Morse-Smale (that is, the nonwandering set is a finite 
set consisting only of hyperbolic equilibria and hyperbolic peri
odic orbits, with the stable and unstable manifolds transversal), 
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if the time one maps Tx(l) converge to T0(l) in Cl(U,X) as 
X tends to 0, where U is a neighbourhood of sf0 in X, then, 
under some additional assumptions, the systems Tx(t) are Morse-
Smale and the corresponding flows restricted to the attractors stfk 

are topologically equivalent for X small enough. Now the natural 
question arises: are there interesting examples of Morse-Smale sys
tems in infinite dimension? In 1985, Henry [10] (see also [1]) has 
proved the following nice result. For a scalar parabolic equation 

Ut = Uxx+f(X> U> Ux) 

with boundary conditions specified at x = 0 and 1, the stable and 
unstable manifolds of hyperbolic equilibria are always transversal. 
As one can choose the nonlinearity f(x, u) so that the associated 
dynamical system is gradient and that the equilibria are all hyper
bolic, this gives us a way to obtain Morse-Smale systems. In higher 
dimensions, no analogous result is known. 

III. The book under review of Hale [7] and the recent book of 
Temam [18] are important contributions to the numerous publica
tions that have appeared over the past twenty years on attractors 
and asymptotic behavior of PDE's, FDE's, etc... They are very 
different in spirit and the reader will profit in various ways from 
each. 

In the three first chapters of his book, J. Hale explains which 
ideas arising from dynamical systems on locally compact spaces 
can be generalized to infinite dimensional systems and he devel
ops the various concepts of stability and dissipation sketched in the 
first part of this review. He motivates in a very clear way the intro
duction of the family of asymptotically smooth mappings. By ex
plaining the fundamental reasons for the existence of attractors, he 
clarifies why some equations or systems have an attractor, thereby 
eliminating some of the mystery that appears elsewhere. He also 
spends some time giving the general properties of the two impor
tant classes of systems, encountered before (whose attractors have 
special properties) namely the gradient and the Morse-Smale sys
tems. In the last two thirds of the book, he gives many examples of 
retarded functional differential equations, neutral functional dif
ferential equations, and PDE's, indicating how to use the theory to 
get the existence of attractors. Although the abstract theory is pow
erful, one should not imagine that it can be applied in a trivial way 
and the author emphasizes that through his wide range of appli
cations. For the scalar parabolic equations, Hale gives a detailed 
description of the structure of the attractors, including some re
sults of bifurcation under perturbations. Finally he devotes a long 
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interesting section to the semicontinuity and continuity of the at-
tractors under regular as well as singular perturbations or under 
approximations, illustrating the results by several examples. 

The book of R. Temam deals with the same topics giving a dif
ferent presentation for the existence of attractors based on absorb
ing sets. His book concentrates on PDE's of physical interest, a 
major part being devoted to obtaining upper bounds on the dimen
sions of the attractors in terms of physical data (see [18, Chapter 
V]) and Lyapunov exponents. Considerable attention is devoted 
also to inertial manifolds. The presentation is very complete (e.g. 
even the needed existence and uniqueness results of solutions of 
the studied PDE's are recalled in an elegant way). This book and 
the book under review are complementary. 

The aim of the author of the book under review was to present 
in detail the basic material on the subject of dissipative systems 
illustrated by advanced, recent applications and to try, through 
unsolved important problems, to bring other people to the study 
of this subject. In my opinion, this goal has been entirely reached; 
indeed, this monograph is a very good introduction to the subject 
and, at the same time, a place where the specialized reader can 
find many interesting open questions. Maybe one could regret that 
the author omitted some of the more complicated proofs in the 
applications, that he did not address the question of existence of 
inertial manifolds and estimates of the dimension of the attractors. 
However his set purpose of leaving out some subjects led to a gain 
in clarity. 

This monograph is very pleasant to read and brings the reader in 
a short time through the fundamental ideas underlying the theory 
of infinite dimensional systems. In addition, the relevance of the 
theory for the applications is amply demonstrated. 
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The subject matter of Real reductive groups! is the harmonic 
analysis and representation theory of real reductive Lie groups. 
This book lays the groundwork for an eventual Part II which will 


