Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Jack K. Hale
Title: Asymptotic behavior of dissipative systems
Additional book information: Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, R.I., 1988, ix + 198 pp., $54.00. ISBN 0-8218-1527-x.

References [Enhancements On Off] (What's this?)

  • 1. S. B. Angement, The Morse-Smale property for a semilinear boundary value problem, J. Differential Equations 67 (1987), 212-242.
  • 2. A. V. Babin and M. I. Vishik, Regular attractors of semigroups and evolution equations, J. Math. Pures Appl. (9) 62 (1983), no. 4, 441–491 (1984). MR 735932
  • 3. J. E. Billotti and J. P. LaSalle, Periodic dissipative processes, Bull. Amer. Math. Soc. (N. S.) 6 (1971), 1082-1089. MR 284682
  • 4. Ciprian Foias, George R. Sell, and Roger Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations 73 (1988), no. 2, 309–353. MR 943945, https://doi.org/10.1016/0022-0396(88)90110-6
  • 5. C. Foiaş and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures Appl. (9) 58 (1979), no. 3, 339–368. MR 544257
  • 6. Jean-Michel Ghidaglia and Jean-Claude Saut, Équations aux dérivées partielles non linéaires dissipatives et systèmes dynamiques, Équations aux dérivées partielles non linéaires dissipatives et systèmes dynamiques, Travaux en Cours, vol. 28, Hermann, Paris, 1988, pp. 11–46 (French). MR 948675
  • 7. Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371
  • 8. Jack K. Hale, Luis T. Magalhães, and Waldyr M. Oliva, An introduction to infinite-dimensional dynamical systems—geometric theory, Applied Mathematical Sciences, vol. 47, Springer-Verlag, New York, 1984. With an appendix by Krzysztof P. Rybakowski. MR 725501
  • 9. J. K. Hale and G. Raugel, Lower semicontinuity of the attractor for gradient systems, Annali di Mat. Pura e Applicata (1989).
  • 10. Daniel B. Henry, Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations, J. Differential Equations 59 (1985), no. 2, 165–205. MR 804887, https://doi.org/10.1016/0022-0396(85)90153-6
  • 11. O. A. Ladyzhenskaya, A dynamical system generated by the Navier-Stokes equatons, Zapiski Nauk. Sem. Leningrad Otd. Math. Instituta Steklova 27 (1972), 91-115. MR 328378
  • 12. O. A. Ladyzhenskaya, Dynamical system generated by the Navier-Stokes equations, Soviet Physics Dokl. 17 (1973), 647-649.
  • 13. N. Levinson, Transformation theory of nonlinear differential equations of the second order, Ann. of Math. (2) 45 (1944), 724-737. MR 11505
  • 14. J. Mallet-Paret, Negatively invariant sets of compact maps and an extension of a theorem of Cartwright, J. Differential Equations 22 (1976), 331-348. MR 423399
  • 15. John Mallet-Paret and George R. Sell, Inertial manifolds for reaction diffusion equations in higher space dimensions, J. Amer. Math. Soc. 1 (1988), no. 4, 805–866. MR 943276, https://doi.org/10.1090/S0894-0347-1988-0943276-7
  • 16. Ricardo Mañé, On the dimension of the compact invariant sets of certain nonlinear maps, Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Math., vol. 898, Springer, Berlin-New York, 1981, pp. 230–242. MR 654892
  • 17. V. Pliss, Nonlocal problems in the theory of oscillations, Academic Press, New York, 1966. MR 196199
  • 18. Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. MR 953967

Review Information:

Reviewer: Geneviève Raugel
Journal: Bull. Amer. Math. Soc. 22 (1990), 175-183
DOI: https://doi.org/10.1090/S0273-0979-1990-15875-6
American Mathematical Society