Differentiability of entropy for Anosov and geodesic flows
Authors:
A. Katok, G. Knieper, M. Pollicott and H. Weiss
Journal:
Bull. Amer. Math. Soc. 22 (1990), 285293
MSC (1985):
Primary 58F15; Secondary 58F17
DOI:
https://doi.org/10.1090/S027309791990158896
MathSciNet review:
1013257
Fulltext PDF
References  Similar Articles  Additional Information

[A] D. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Steklov Inst. Math. 90 (1967), 235. MR 224110

[B 1] R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1972), 429459. MR 339281

[B 2] R. Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math. 94 (1972), 130. MR 298700

[HP 1] M. Hirsch and C. Pugh, Stable manifolds and hyperbolic sets, Proc. Sympos. Pure Math. XIV (1968), 133165. MR 271991

[HP 2] M. Hirsch and C. Pugh, Smoothness of horocycle foliations, J. Differential Geom. 10 (1975), 225238. MR 368077

[K1] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. Inst. Hautes Études Sci 51 (1980), 137173. MR 573822

[K 2] A. Katok, Four applications of conformal equivalence to geometry and dynamics, Ergodic Theory Dynamical Systems Conley Memorial Issue 8^{*} (1988), 139152. MR 967635

[K 3] A. Katok, Nonuniform hyperbolicity and structure of smooth dynamical systems, Proc. of International Congress of Mathematicians 1983, Warszawa, 2, pp. 12451254. MR 804774

[KKPW] A. Katok, G. Knieper, M. Pollicott, and H. Weiss, Differentiability and analyticity of topological entropy for Anosov and geodesic flows, Invent. Math., 98 (1989), 581597. MR 1022308

[KKW] A. Katok, G. Knieper, and H. Weiss, Regularity of topological entropy for geodesic and Anosov flows, preprint.

[Kn] G. Knieper, On the second derivative of metric entropy at locally symmetric spaces, in preparation.

[KW 1 G. Knieper and H. Weiss] Differentiability of measure theoretic entropy: I, Invent. Math. 95 (1989), 579589. MR 979366

[KW 2] G. Knieper and H. Weiss, Smoothness of measure theoretic entropy for Anosov flows, preprint.

[Mn] A. Manning, Topological entropy for geodesic flows, Ann. of Math. 110 (1979), 567573. MR 554385

[Ma] G. Margulis, Applications of ergodic theory to the investigation of manifolds of negative curvature, Functional Anal. Appl. 3 (1969), 335336. MR 257933

[Mi 1] M. Misiurewicz, On noncontinuity of topological entropy, Bull. Acad. Polon. Sci., Ser. Sci Math. Astro. Phys. 19 (4), (1971), 319320. MR 287578

[Mi 2] M. Misiurewicz, Diffeomorphisms without any measure with maximal entropy, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astro. Phys. 21 (10), (1973), 903910. MR 336764

[N] S. Newhouse, Continuity properties of entropy, Ergodic Theory Dynamical Systems Conley Memorial Issue 8^{*} (1988), 283300. MR 967642

[PP] W. Parry and M. Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. of Math. 118 (1983), 573592. MR 727704

[Pe] Y. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Russian Math. Surveys 32 (4), (1977), 55114. MR 466791

[Po] M. Pollicott, Meromorphic extensions of generalized zeta functions, Invent. Math. 85 (1986), 147164. MR 842051

[R] D. Ruelle, Thermodynamics formalism, AddisonWesley, Reading, Mass., 1978. MR 511655

[Sh] B. Shiffman, Separate analyticity and Hartogs theorems, preprint. MR 1029683

[Si] J. Sinai, On weak isomorphism of transformations with invariant measures, Math. USSR Sb. 63 1, (1964), 2342. MR 161961

[Y] Y. Yomdin, Volume growth and entropy, Israel J. Math. 57 (1987), 285300. MR 889979
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 58F15, 58F17
Retrieve articles in all journals with MSC (1985): 58F15, 58F17
Additional Information
DOI:
https://doi.org/10.1090/S027309791990158896