Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 932457
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: A. G. Dragalin
Title: Mathematical intuitionism. Introduction to proof theory
Additional book information: Translations of Mathematical Monographs, Vol. 67. Translated by E. Mendelson. American Mathematical Society, Providence, R. I., 1988, ix+228 pp., $75.00. ISBN 0-8218-4520-9.

References [Enhancements On Off] (What's this?)

  • 1. E. W. Beth, Semantic construction of intuitionistic logic, Kon. Ned. Ak. Wet. 19 (1956), 357-388. MR 89152
  • 2. P. J. Cohen, Set theory and the continuum hypothesis, Benjamin, New York, 1966. MR 232676
  • 3. Eduardo J. Dubuc, 𝐶^{∞}-schemes, Amer. J. Math. 103 (1981), no. 4, 683–690. MR 623133, https://doi.org/10.2307/2374046
  • 4. M. P. Fourman and D. S. Scott, Sheaves and logic, Applications of sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977) Lecture Notes in Math., vol. 753, Springer, Berlin, 1979, pp. 302–401. MR 555551
  • 5. A. Grothendieck, et al., Theorie des topos et cohomologie étale des schémes, Springer LNM 269, 1972. MR 354653
  • 6. J. M. E. Hyland, The effective topos, The L.E.J. Brouwer Centenary Symposium (Noordwijkerhout, 1981) Stud. Logic Foundations Math., vol. 110, North-Holland, Amsterdam-New York, 1982, pp. 165–216. MR 717245
  • 7. S. C. Kleene, On the interpretation of intuitionistic number theory, J. Symbolic Logic 10 (1945), 109-124. MR 15346
  • 8. Anders Kock, Synthetic differential geometry, London Mathematical Society Lecture Note Series, vol. 51, Cambridge University Press, Cambridge-New York, 1981. MR 649622
  • 9. S. Kripke, Semantical analysis of intuitionistic logic, I, in Formal Systems and Recursive Functions (J. Crossely and M. A. E. Dummett, eds.), North-Holland, Amsterdam, 1965, pp. 92-130. MR 201300
  • 10. R. Lavendhomme, Leçons de géométrie différentielle synthétique naïve, Monographies de Mathématique [Mathematical Monographs], vol. 3, Université Catholique de Louvain, Institut de Mathématique Pure et Appliquée, Louvain-la-Neuve; Centrale d’Achats et Service d’Impression (CIACO), Louvain-la-Neuve, 1987 (French). MR 933087
  • 11. Ieke Moerdijk and Gonzalo E. Reyes, A smooth version of the Zariski topos, Adv. in Math. 65 (1987), no. 3, 229–253. MR 904724, https://doi.org/10.1016/0001-8708(87)90023-5
  • 12. A. Robinson, Non-standard analysis, North-Holland, Amsterdam, 1966. MR 205854
  • 13. M. Tierney, Sheaf theory and the continuum hypothesis, in Toposes, Algebraic Geometry and Logic (F. W. Lawvere, ed.), Springer LNM 274, 1972. MR 373888
  • 14. A. S. Troelstra and D. van Dalen, Constructivism in mathematics. Vol. II, Studies in Logic and the Foundations of Mathematics, vol. 123, North-Holland Publishing Co., Amsterdam, 1988. An introduction. MR 970277

Review Information:

Reviewer: Ieke Moerdijk
Journal: Bull. Amer. Math. Soc. 22 (1990), 301-304
DOI: https://doi.org/10.1090/S0273-0979-1990-15891-4
American Mathematical Society