Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Deformation rigidity for subgroups of $SL\left( {n,{\mathbf{Z}}} \right)$ acting on the $n$-torus


Author: Steven Hurder
Journal: Bull. Amer. Math. Soc. 23 (1990), 107-113
MSC (1985): Primary 57S25, 58H15, 22E40
DOI: https://doi.org/10.1090/S0273-0979-1990-15914-2
MathSciNet review: 1027900
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Steklov Inst. Math. 90 (1967), Amer. Math. Soc. Transl. (1969), 5-209. MR 224110
  • 2. A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235-272. MR 387496
  • 3. Armand Borel, Stable real cohomology of arithmetic groups. II, Manifolds and Lie groups (Notre Dame, Ind., 1980) Progr. Math., vol. 14, Birkhäuser, Boston, Mass., 1981, pp. 21–55. MR 642850
  • 4. L. Flamino and A. Katok, Rigidity of symplectic Anosov diffeomorphisms on low dimensional tori, Cal. Tech., preprint, 1989.
  • 5. J. Franks, Anosov diffeomorphisms on tori, Trans. Amer. Math. Soc. 145 (1969), 117-124. MR 253352
  • 6. M. W. Hirsch, C. Pugh and M. Snub, Invariant manifolds, Lecture Notes in Math., Vol. 583, Springer-Verlag, Berlin, 1977. MR 501173
  • 7. S. Hurder, Deformation rigidity and structural stability for Anosov actions of higher-rank lattices, preprint.
  • 8. S. Hurder, Problems on rigidity of group actions and cocycles, Ergodic Theory Dynam. Systems 5 (1985), no. 3, 473–484. MR 805843, https://doi.org/10.1017/S0143385700003084
  • 9. S. Hurder and A. Katok, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 5–61 (1991). MR 1087392
  • 10. J. Lewis, Infinitesimal rigidity for the action of SL(n, Z) on T, Thesis, University of Chicago, May, 1989.
  • 11. A. Livsic, Cohomology of dynamical systems, Math. USSR Izv. 6 (1972), 1278-1301. MR 334287
  • 12. R. de la Llave, Invariants for smooth conjugacy of hyperbolic dynamical systems. II, Comm. Math. Phys. 109 (1987), no. 3, 369–378. MR 882805
  • 13. R. de la Llave, J. M. Marco, and R. Moriyón, Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation, Ann. of Math. (2) 123 (1986), no. 3, 537–611. MR 840722, https://doi.org/10.2307/1971334
  • 14. J. M. Marco and R. Moriyón, Invariants for smooth conjugacy of hyperbolic dynamical systems. I, Comm. Math. Phys. 109 (1987), no. 4, 681–689. MR 885566
  • 15. G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825
  • 16. G. Prasad and M. S. Raghunathan, Cartan subgroups and lattices in semisimple groups, Ann. of Math. 96 (1972), 296-317. MR 302822
  • 17. Michael Shub, Global stability of dynamical systems, Springer-Verlag, New York, 1987. With the collaboration of Albert Fathi and Rémi Langevin; Translated from the French by Joseph Christy. MR 869255
  • 18. Dennis Stowe, The stationary set of a group action, Proc. Amer. Math. Soc. 79 (1980), no. 1, 139–146. MR 560600, https://doi.org/10.1090/S0002-9939-1980-0560600-2
  • 19. Robert J. Zimmer, Lattices in semisimple groups and invariant geometric structures on compact manifolds, Discrete groups in geometry and analysis (New Haven, Conn., 1984) Progr. Math., vol. 67, Birkhäuser Boston, Boston, MA, 1987, pp. 152–210. MR 900826, https://doi.org/10.1007/978-1-4899-6664-3_6

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 57S25, 58H15, 22E40

Retrieve articles in all journals with MSC (1985): 57S25, 58H15, 22E40


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1990-15914-2

American Mathematical Society