The adaption problem for approximating linear operators
Authors:
Mark A. Kon and Erich Novak
Journal:
Bull. Amer. Math. Soc. 23 (1990), 159165
MSC (1985):
Primary 65J10, 68Q25
DOI:
https://doi.org/10.1090/S027309791990159245
MathSciNet review:
1028139
Fulltext PDF
References  Similar Articles  Additional Information

[B] N. S. Bakhvalov, On the optimality of linear methods for operator approximation in convex classes of functions, U.S.S.R. Comput. Math, and Math. Phys. 11 (1971), 244249.

[GM] S. Gal and C. A. Micchelli, Optimal sequential and nonsequential procedures for evaluating a functional, Appl. Anal. 10 (1980), 105120. MR 575536

[KW] B. Z. Kacewicz an G. W. Wasilkowski, How powerful is continuous nonlinear information for linear problems? J. Complexity 2 (1986), 306316. MR 923024

[K] J. Kiefer, Optimum sequential search and approximation methods under minimum regularity assumptions, SIAM J. 5 (1957), 105136. MR 92326

[M] P. Mathé, snumbers in analytic complexity, Akademie der Wissenschaften der DDR, preprint.

[PW] E. W. Packel and H. Woźniakowski, Recent developments in informationbased complexity, Bull. Amer. Math. Soc. 17 (1987), 936. MR 888879

[S] A. G. Sukharev, Optimal strategies for the search for an extremum, U.S.S.R. Comput. Math, and Math. Phys. 11 (1971), 119137. MR 297111

[TW] J. F. Traub and H. Woźniakowsksi, A general theory of optimal algorithms, Academic Press, New York, 1980. MR 359396

[TWW] J. F. Traub, G. W. Wasilkowski and H. Woźniakowski, Information based complexity, Academic Press, New York, 1988. MR 958691

[ZL] N. F. Zaliznyak and A. A. Ligun, On optimum strategy in search of a global maximum of a function, U.S.S.R. Comput. Math. and Math. Phys. 18(1978), 314321. MR 501912
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 65J10, 68Q25
Retrieve articles in all journals with MSC (1985): 65J10, 68Q25
Additional Information
DOI:
https://doi.org/10.1090/S027309791990159245