Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Multiplication of distributions


Author: J. F. Colombeau
Journal: Bull. Amer. Math. Soc. 23 (1990), 251-268
MSC (1985): Primary 46F10, 35D05, 35D10
MathSciNet review: 1028141
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. M. Adamczewski, J.-F. Colombeau, and A. Y. LeRoux, Convergence of numerical schemes involving powers of the Dirac delta function, J. Math. Anal. Appl. 145 (1990), no. 1, 172–185. MR 1031183, 10.1016/0022-247X(90)90439-M
  • 2. A. Y. Barka, J. F. Colombeau, and B. Perrot, A numerical modeling of the fluid/fluid acoustic dioptra, J. Acoustique (in press), 1989.
  • 3. Hebe A. Biagioni, A nonlinear theory of generalized functions, 2nd ed., Lecture Notes in Mathematics, vol. 1421, Springer-Verlag, Berlin, 1990. MR 1049623
  • 4. N. N. Bogoliubov and D. V. Shirkov, Introduction to the theory of quantized fields, Interscience (various editions).
  • 5. J.-J. Cauret, J.-F. Colombeau, and A. Y. LeRoux, Discontinuous generalized solutions of nonlinear nonconservative hyperbolic equations, J. Math. Anal. Appl. 139 (1989), no. 2, 552–573. MR 996979, 10.1016/0022-247X(89)90129-7
  • 6. Jean-François Colombeau, Differential calculus and holomorphy, North-Holland Mathematics Studies, vol. 64, North-Holland Publishing Co., Amsterdam-New York, 1982. Real and complex analysis in locally convex spaces; Notas de Matemática [Mathematical Notes], 84; R & E, 2. MR 671252
  • 7. J.-F. Colombeau, A multiplication of distributions, J. Math. Anal. Appl. 94 (1983), no. 1, 96–115. MR 701451, 10.1016/0022-247X(83)90007-0
  • 8. Jean-François Colombeau, New generalized functions and multiplication of distributions, North-Holland Mathematics Studies, vol. 84, North-Holland Publishing Co., Amsterdam, 1984. Notas de Matemática [Mathematical Notes], 90. MR 738781
  • 9. Jean-François Colombeau, Elementary introduction to new generalized functions, North-Holland Mathematics Studies, vol. 113, North-Holland Publishing Co., Amsterdam, 1985. Notes on Pure Mathematics, 103. MR 808961
  • 10. Jean-François Colombeau, The elastoplastic shock problem as an example of the resolution of ambiguities in the multiplication of distributions, J. Math. Phys. 30 (1989), no. 10, 2273–2279. MR 1016295, 10.1063/1.528554
  • 11. J. F. Colombeau, A method to obtain correct jump conditions from systems in non-conservative form: new formulas and new numerical schemes, Num. Appl. Math. (in press).
  • 12. J. F. Colombeau and M. Langlais, An existence-uniqueness result for a nonlinear parabolic equation with Cauchy data distribution, J. Math. Anal. Appl. 145 (1) (1990), 186-196.
  • 13. J. F. Colombeau and A. Y. Le Roux, Numerical techniques in elastodynamics, Lecture Notes in Math., vol. 1270, Springer-Verlag, Berlin and New York, 1986, pp. 104-114.
  • 14. J.-F. Colombeau and A. Y. LeRoux, Multiplications of distributions in elasticity and hydrodynamics, J. Math. Phys. 29 (1988), no. 2, 315–319. MR 927013, 10.1063/1.528069
  • 15. J. F. Colombeau and A. Y. Le Roux, Numerical methods for hyperbolic systems in nonconservative form using products of distributions, Advances for computer methods in PDE 6 IMACS, 1987, pp. 28-37. Far better results can be found in: P. DeLuca Modelisation numérique en elastoplasticité dynamique, thesè, Bordeaux, 1989.
  • 16. J. F. Colombeau and A. Y. Le Roux, Generalized functions and products appearing in equations of engineering and physics, preprint.
  • 17. J.-F. Colombeau, A. Y. LeRoux, A. Noussaïr, and B. Perrot, Microscopic profiles of shock waves and ambiguities in multiplications of distributions, SIAM J. Numer. Anal. 26 (1989), no. 4, 871–883. MR 1005514, 10.1137/0726048
  • 18. J. F. Colombeau and B. Perrot, A numerical method for the solution of nonlinear systems of physics involving multiplications of distributions, preprint.
  • 19. Ronald J. DiPerna, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal. 88 (1985), no. 3, 223–270. MR 775191, 10.1007/BF00752112
  • 20. Y. C. Fung, A first course in continuum mechanics, Prentice Hall, Engle-wood Cliffs, NJ, 1969.
  • 21. A. Marzouk and B. Perrot, Regularity results for generalized polutions of algebraic equations and algebraic differential equations, preprint.
  • 22. M. Oberguggenberger, Products of distributions, J. Reine Angew. Math. 365 (1986), 1–11. MR 826149, 10.1515/crll.1986.365.1
  • 23. Michael Oberguggenberger, Generalized solutions to semilinear hyperbolic systems, Monatsh. Math. 103 (1987), no. 2, 133–144. MR 881719, 10.1007/BF01630683
  • 24. Michael Oberguggenberger, Hyperbolic systems with discontinuous coefficients: generalized solutions and a transmission problem in acoustics, J. Math. Anal. Appl. 142 (1989), no. 2, 452–467. MR 1014590, 10.1016/0022-247X(89)90014-0
  • 25. Michael Oberguggenberger, Hyperbolic systems with discontinuous coefficients: examples, Generalized functions, convergence structures, and their applications (Dubrovnik, 1987) Plenum, New York, 1988, pp. 257–266. MR 975737
  • 26. Elemer E. Rosinger, Generalized solutions of nonlinear partial differential equations, North-Holland Mathematics Studies, vol. 146, North-Holland Publishing Co., Amsterdam, 1987. Notas de Matemática [Mathematical Notes], 119. MR 918145
  • 27. Lee A. Rubel, Solutions of algebraic differential equations, J. Differential Equations 49 (1983), no. 3, 441–452. MR 715696, 10.1016/0022-0396(83)90006-2
  • 28. Lee A. Rubel, Some research problems about algebraic differential equations, Trans. Amer. Math. Soc. 280 (1983), no. 1, 43–52. MR 712248, 10.1090/S0002-9947-1983-0712248-1
  • 29. Lee A. Rubel, Generalized solutions of algebraic differential equations, J. Differential Equations 62 (1986), no. 2, 242–251. MR 833420, 10.1016/0022-0396(86)90100-2

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 46F10, 35D05, 35D10

Retrieve articles in all journals with MSC (1985): 46F10, 35D05, 35D10


Additional Information

DOI: http://dx.doi.org/10.1090/S0273-0979-1990-15919-1