Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Simply connected manifolds of positive scalar curvature


Author: Stephan Stolz
Journal: Bull. Amer. Math. Soc. 23 (1990), 427-432
MSC (1985): Primary 53C20, 55T15, 55N22, 57R90
DOI: https://doi.org/10.1090/S0273-0979-1990-15951-8
MathSciNet review: 1056561
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [AP] J. F. Adams and S. Priddy, Uniqueness of BSO, Math. Proc. Cambridge Philos. Soc. 80 (1978), 475-509. MR 431152
  • [ABP] D. W. Anderson, E. H. Brown, Jr., and F. P. Peterson, The structure of the spin cobordism ring, Ann. of Math. 86 (1967), 271-298. MR 219077
  • [Be] A. L. Besse, Einstein manifolds, Springer-Verlag, Berlin and New York, 1986. MR 867684
  • [Bo] J. M. Boardman, Stable homotopy theory; Chapter V—Duality and Thorn spectra, mimeographed notes, Warwick, 1966.
  • [GL] M. Gromov and H. B. Lawson, Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980), 423-434. MR 577131
  • [Hi] N. Hitchin, Harmonic Spinors, Adv. Math. 14 (1974), 1-55. MR 358873
  • [KS] M. Kreck and S. Stolz, A geometric interpretation of elliptic homology (in preparation).
  • [Li] A. Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris Sér. A-B 257 (1963), 7-9. MR 156292
  • [Ma] H. R. Margolis, Eilenberg-MacLane spectra, Proc. Amer. Math. Soc. 43 (1974), 409-415. MR 341488
  • [Mi] T. Miyazaki, Simply connected spin manifolds and positive scalar curvature, Proc. Amer. Math. Soc. 93 (1985), 730-734. MR 776211
  • [P] D. J. Pengelley, $H\sp{*} (M{\rm O}łangle 8\rangle ;\,Z/2)$ is an extended $A\sp{*} \sb{2}$-coalgebra, , Proc. Amer. Math. Soc. 87 (1983), 355-356.
  • [Ro] J. Rosenberg, C* -algebras, positive scalar curvature, and the Novikov Conjecture, III, Topology 25 (1986), 319-336. MR 842428
  • [Sw] R. M. Switzer, Algebraic topology—homotopy and homology, Springer-Verlag, Berlin and New York, 1975.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 53C20, 55T15, 55N22, 57R90

Retrieve articles in all journals with MSC (1985): 53C20, 55T15, 55N22, 57R90


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1990-15951-8

American Mathematical Society