Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Heinz-Otto Kreiss and Jens Lorenz
Title: Initial-boundary value problems and the Navier-Stokes equations
Additional book information: Academic Press, New York, 1989, 398 pp., $54.50. ISBN 0-12-426125-6.

References [Enhancements On Off] (What's this?)

  • [CKN] L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), 771-831. MR 673830
  • [CLMS] R. Coifman, P. -L. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy spaces, C. R. Acad. Sci. Paris (to appear).
  • [C1] P. Constantin, Note on loss of regularity for solutions of the 3-D incompressible Euler and related equations, Comm. Math. Phys. 104 (1986), 311-326. MR 836008
  • [C2] P. Constantin, Navier-Stokes equations and area of interfaces, Comm. Math. Phys. (to appear). MR 1048693
  • [CFMT] P. Constantin, C. Foias, O. Manley, and R. Temam, Determining modes and fractal dimension of turbulent flows, J. Fluid Mech. 150 (1985), 427-440. MR 794051
  • [CF] P. Constantin and C. Foias, Navier-Stokes equations, The Univ. of Chicago Press, Chicago, 1988. MR 972259
  • [F] C. Foias, Statistical study of Navier-Stokes equations, I, Rend. Sem. Mat. Univ. Padova 48 (1973), 219-349. MR 352733
  • [FT] C. Foias and R. Temam, Some analytic and geometric properties of the solutions of the Navier-Stokes equations, J. Math. Pures Appl. 58 (1979), 339-368. MR 544257
  • [FGT] C. Foias, C. Guillope, and R. Temam, New a priori estimates for Navier-Stokes equations in dimension 3, Comm. Partial Differential Equations 6 (1981), 329-359. MR 607552
  • [GM] Y. Giga and T. Miyakawa, Navier-Stokes flow in R3 with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations 14 (1989), 577-618. MR 993821
  • [H] E. Hopf, Statistical hydrodynamics and functional calculus, J. Rat. Mech. Anal. 1 (1952), 87-123. MR 59119
  • [K] T. Kato, Non-stationary flows of viscous and ideal fluids in R3, J. Funct. Anal. 9 (1972), 296-305. MR 481652
  • [KM] S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math. 34 (1981), 481-524. MR 615627
  • [L] J. Leray, Sur le mouvement d'un liquide viqueux emplissant l'espace, Acta Math. 63 (1934), 193-248. MR 1555394
  • [L-L] L. Landau and E. Lifschitz, Fluid mechanics, Addison-Wesley, New York, 1953.
  • [M] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Appl. Math. Sci., vol. 53, Springer-Verlag, New York, 1984. MR 748308
  • [M-dP] A. Majda and R. DiPerna, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys. 108 (1987), 667-689. MR 877643
  • [R.] D. Ruelle, Large volume limit of distributions of characteristic exponents in turbulence, Comm. Math. Phys. 87 (1982), 287-302. MR 684105
  • [S] J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems (R. E. Langer, ed.), Univ. of Wisconsin Press, Madison, 1963. MR 150444
  • [T] R. Temam, Navier-Stokes equations, North-Holland, Amsterdam, 1977. MR 609732
  • [VF] M. J. Vishik and A. V. Fursikov, Mathematical problems of statistical hydromechanics, Kluwer Acad. Publ., Dordrecht, Holland, 1988.
  • [vW] W. von Wahl, The equations of Navier-Stokes and abstract parabolic equations, Vieweg and Sohn, Braunschweig and Wiesbaden, 1988. MR 832442
  • [Y] V. I. Yudovitch, Non-stationary flow of an ideal incompressible liquid, Zh. Vychisl. Mat. i Mat. Fiz. 3 (1963), 1032-1066. MR 158189

Review Information:

Reviewer: Peter Constantin
Journal: Bull. Amer. Math. Soc. 23 (1990), 555-559
DOI: https://doi.org/10.1090/S0273-0979-1990-15979-8
American Mathematical Society