Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Heinz-Otto Kreiss and Jens Lorenz
Title: Initial-boundary value problems and the Navier-Stokes equations
Additional book information: Academic Press, New York, 1989, 398 pp., $54.50. ISBN 0-12-426125-6.

References [Enhancements On Off] (What's this?)

  • L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), no. 6, 771–831. MR 673830, https://doi.org/10.1002/cpa.3160350604
  • [CLMS] R. Coifman, P. -L. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy spaces, C. R. Acad. Sci. Paris (to appear).
  • Peter Constantin, Note on loss of regularity for solutions of the 3-D incompressible Euler and related equations, Comm. Math. Phys. 104 (1986), no. 2, 311–326. MR 836008
  • Peter Constantin, Navier-Stokes equations and area of interfaces, Comm. Math. Phys. 129 (1990), no. 2, 241–266. MR 1048693
  • P. Constantin, C. Foias, O. P. Manley, and R. Temam, Determining modes and fractal dimension of turbulent flows, J. Fluid Mech. 150 (1985), 427–440. MR 794051, https://doi.org/10.1017/S0022112085000209
  • Peter Constantin and Ciprian Foias, Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. MR 972259
  • [F] C. Foias, Statistical study of Navier-Stokes equations, I, Rend. Sem. Mat. Univ. Padova 48 (1973), 219-349. MR 352733
  • C. Foiaş and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures Appl. (9) 58 (1979), no. 3, 339–368. MR 544257
  • Ciprian Foiaş, Colette Guillopé, and Roger Temam, New a priori estimates for Navier-Stokes equations in dimension 3, Comm. Partial Differential Equations 6 (1981), no. 3, 329–359. MR 607552, https://doi.org/10.1080/03605308108820180
  • Yoshikazu Giga and Tetsuro Miyakawa, Navier-Stokes flow in 𝐑³ with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations 14 (1989), no. 5, 577–618. MR 993821, https://doi.org/10.1080/03605308908820621
  • [H] E. Hopf, Statistical hydrodynamics and functional calculus, J. Rat. Mech. Anal. 1 (1952), 87-123. MR 59119
  • [K] T. Kato, Non-stationary flows of viscous and ideal fluids in R3, J. Funct. Anal. 9 (1972), 296-305. MR 481652
  • Sergiu Klainerman and Andrew Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math. 34 (1981), no. 4, 481–524. MR 615627, https://doi.org/10.1002/cpa.3160340405
  • Jean Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63 (1934), no. 1, 193–248 (French). MR 1555394, https://doi.org/10.1007/BF02547354
  • [L-L] L. Landau and E. Lifschitz, Fluid mechanics, Addison-Wesley, New York, 1953.
  • A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984. MR 748308
  • Ronald J. DiPerna and Andrew J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys. 108 (1987), no. 4, 667–689. MR 877643
  • David Ruelle, Large volume limit of the distribution of characteristic exponents in turbulence, Comm. Math. Phys. 87 (1982/83), no. 2, 287–302. MR 684105
  • [S] J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems (R. E. Langer, ed.), Univ. of Wisconsin Press, Madison, 1963. MR 150444
  • [T] R. Temam, Navier-Stokes equations, North-Holland, Amsterdam, 1977. MR 609732
  • [VF] M. J. Vishik and A. V. Fursikov, Mathematical problems of statistical hydromechanics, Kluwer Acad. Publ., Dordrecht, Holland, 1988.
  • Wolf von Wahl, The equations of Navier-Stokes and abstract parabolic equations, Aspects of Mathematics, E8, Friedr. Vieweg & Sohn, Braunschweig, 1985. MR 832442
  • [Y] V. I. Yudovitch, Non-stationary flow of an ideal incompressible liquid, Zh. Vychisl. Mat. i Mat. Fiz. 3 (1963), 1032-1066. MR 158189

Review Information:

Reviewer: Peter Constantin
Journal: Bull. Amer. Math. Soc. 23 (1990), 555-559
DOI: https://doi.org/10.1090/S0273-0979-1990-15979-8
American Mathematical Society