Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Paul Koosis
Title: The logarithmic integral
Additional book information: Cambridge Studies In Advanced Mathematics, vol. 12, Cambridge University Press, Cambridge, New York, New Rochelle, Melbourne, Sydney, 1988, xvi + 606 pp., $89.50. ISBN 0-521-30906-9.

References [Enhancements On Off] (What's this?)

  • [1] S. N. Bernstein, Lecons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle, Paris, 1926.
  • [2] A. Beurling, Quasianalyticity and general distributions, lecture notes, Stanford, 1961.
  • [3] A. Beurling, Collected works, vol. 1, Birkhäuser, Boston, 1989.
  • [4] G. G. Bilodeau, The origin and early development of non-analytic infinitely differentiable functions, Arch. Hist. Exact Sci. 27 (1982), 115-135. MR 677684
  • [5] E. Borel, Lecons sur les fonctions monogènes uniformes d'une variable complexe, Gauthier-Villars, Paris, 1917.
  • [6] J. Brennan, Functions with rapidly decreasing negative Fourier coefficients, Lecture Notes in Math., vol. 1275, Springer-Verlag, Berlin, 1987, pp. 31-43. MR 922291
  • [7] T. Carleman, Les fonctions quasi-analytiques, Gauthier-Villars, Paris, 1926.
  • [8] A. Denjoy, Sur les fonctions quasi-analytiques de variable réelle, C. R. Acad. Sci. Paris Ser. 1 Math. 173 (1921), 1329-1331. MR 74471
  • [9] B. Fuglede, Fine potential theory - a survey, lecture, Rostock, 1986. MR 877269
  • [10] J. Hadamard, Sur la généralisation de la notion de fonction analytique, C. R. Seanches Soc. Math. France (1912), 28-29.
  • [11] W. K. Hayman, Subharmonic functions, vol. 2, Academic Press, London, 1989. MR 1049148
  • [12] E. Holmgren, Sur l'équation de la propagation de la chaleur, Ark. Mat. Astronom. Fys. 4 (14), (1908), 1-11, and 4 (18), (1908), 1-28.
  • [13] E. Holmgren, Sur les solutions quasianalytiques de l'équation de la chaleur, Ark. Mat. Astronom. Fys. 18 (1924), 1-9.
  • [14] F. John, Partial differential equation, 4th ed., Springer-Verlag, Berlin, 1982. MR 514404
  • [15] N. Levinson, Gap and density theorems, Amer. Math. Soc. Colloq. Publ., vol. 26, Amer. Math. Soc., New York, 1940. MR 3208
  • [16] A. Tychonoff, Théorèmes d'unicité pour l'équation de la chaleur, Mat. Sb. 42(1935), 199-216.
  • [17] S. Täcklind, Sur les classes quasianalytiques des solutions des équations aux derivees partiélles du type parabolique, Nova Acta Soc. Sci. Upsal. 10 (1936), 1-57.
  • [18] I. N. Vekua, Generalized analytic functions, Addison-Wesley, Reading, Mass., 1962. MR 150320
  • [19] A. L. Vol'berg, The logarithm of an almost analytic function is summable, Dokl. Akad. Nauk SSSR 265 (1982), 1297-1301. MR 670692
  • [20] A. A. Borichev and A. L. Vol'berg, Uniqueness theorems for almost analytic functions, Algebra and Analysis 1 (1989), 144-176. MR 1015338
  • [21] M. Benedicks, The support of functions and distributions with a spectral gap, Math. Scand. 55 (1984), 285-309. MR 787203

Review Information:

Reviewer: James E. Brennan
Journal: Bull. Amer. Math. Soc. 24 (1991), 248-257
DOI: https://doi.org/10.1090/S0273-0979-1991-16003-9
American Mathematical Society