Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

The Selberg zeta function and scattering poles for Kleinian groups


Author: Peter A. Perry
Journal: Bull. Amer. Math. Soc. 24 (1991), 327-333
MSC (1985): Primary 58G25; Secondary 35P25, 58F20
MathSciNet review: 1077266
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Shmuel Agmon, On the spectral theory of the Laplacian on noncompact hyperbolic manifolds, Journées “Équations aux derivées partielles” (Saint Jean de Monts, 1987) École Polytech., Palaiseau, 1987, pp. Exp. No. XVII, 16. MR 920012
  • 2. D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature., Proceedings of the Steklov Institute of Mathematics, No. 90 (1967). Translated from the Russian by S. Feder, American Mathematical Society, Providence, R.I., 1969. MR 0242194
  • 3. C. Bardos, J.-C. Guillot, and J. Ralston, La relation de Poisson pour l’équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Comm. Partial Differential Equations 7 (1982), no. 8, 905–958 (French). MR 668585, 10.1080/03605308208820241
  • 4. Isaac Chavel, Riemannian geometry, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 98, Cambridge University Press, Cambridge, 2006. A modern introduction. MR 2229062
  • 5. J. Elstrodt, Die Selbergsche Spurformel für kompakte Riemannsche Flächen, Jahresber. Deutsch. Math.-Verein. 83 (1981), no. 2, 45–77. MR 612411
  • 6. C. Epstein, private communication.
  • 7. R. Froese, P. Hislop, and P. Perry, The Laplace operator on hyperbolic three-manifolds with cusps of non-maximal rank, Invent. Math, (submitted).
  • 8. David Fried, The zeta functions of Ruelle and Selberg. I, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 4, 491–517. MR 875085
  • 9. Ramesh Gangolli, Zeta functions of Selberg’s type for compact space forms of symmetric spaces of rank one, Illinois J. Math. 21 (1977), no. 1, 1–41. MR 0485702
  • 10. C. Gérard, Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Séminaire sur les équations aux dérivées partielles, 1985–1986, École Polytech., Palaiseau, 1986, pp. Exp. No. XIV, 9 (French). MR 874573
  • 11. Dennis A. Hejhal, The Selberg trace formula for 𝑃𝑆𝐿(2,𝑅). Vol. I, Lecture Notes in Mathematics, Vol. 548, Springer-Verlag, Berlin-New York, 1976. MR 0439755
  • 12. Mitsuru Ikawa, On the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ. 23 (1983), no. 1, 127–194. MR 692733
  • 13. Peter D. Lax and Ralph S. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Funct. Anal. 46 (1982), no. 3, 280–350. MR 661875, 10.1016/0022-1236(82)90050-7
  • 14. Peter D. Lax and Ralph S. Phillips, Translation representation for automorphic solutions of the wave equation in non-Euclidean spaces. I, Comm. Pure Appl. Math. 37 (1984), no. 3, 303–328. MR 739923, 10.1002/cpa.3160370304
  • 15. P. Lax and R. S. Phillips, Translation representation for automorphic solutions of the non-Euclidean wave equation. IV, Stanford University, preprint, 1990.
  • 16. N. Mandouvalos, The theory of Eisenstein series for Kleinian groups, The Selberg trace formula and related topics (Brunswick, Maine, 1984), Contemp. Math., vol. 53, Amer. Math. Soc., Providence, RI, 1986, pp. 357–370. MR 853566, 10.1090/conm/053/853566
  • 17. N. Mandouvalos, Spectral theory and Eisenstein series for Kleinian groups, Proc. London Math. Soc. (3) 57 (1988), no. 2, 209–238. MR 950590, 10.1112/plms/s3-57.2.209
  • 18. Nikolaos Mandouvalos, Scattering operator, Eisenstein series, inner product formula and “Maass-Selberg” relations for Kleinian groups, Mem. Amer. Math. Soc. 78 (1989), no. 400, iv+87. MR 989747, 10.1090/memo/0400
  • 19. N. Mandouvalos, Scattering operator and Eisenstein integral for Kleinian groups, Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 2, 203–217. MR 1074709, 10.1017/S0305004100069085
  • 20. H. P. McKean, Selberg’s trace formula as applied to a compact Riemann surface, Comm. Pure Appl. Math. 25 (1972), 225–246. MR 0473166
  • 21. Richard Melrose, Polynomial bound on the number of scattering poles, J. Funct. Anal. 53 (1983), no. 3, 287–303. MR 724031, 10.1016/0022-1236(83)90036-8
  • 22. R. B. Melrose, Polynomial bounds on the distribution of poles in scattering by an obstacle, Journées "Équations aux derivées partielles, " Saint-Jean-de-Monts, 1984.
  • 23. Rafe R. Mazzeo and Richard B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987), no. 2, 260–310. MR 916753, 10.1016/0022-1236(87)90097-8
  • 24. S. J. Patterson, The Laplacian operator on a Riemann surface, Compositio Math. 31 (1975), no. 1, 83–107. MR 0384702
  • 25. S. J. Patterson, The Selberg zeta-function of a Kleinian group, Number theory, trace formulas and discrete groups (Oslo, 1987) Academic Press, Boston, MA, 1989, pp. 409–441. MR 993330
  • 26. Peter A. Perry, The Laplace operator on a hyperbolic manifold. II. Eisenstein series and the scattering matrix, J. Reine Angew. Math. 398 (1989), 67–91. MR 998472, 10.1515/crll.1989.398.67
  • 27. Peter A. Perry, The Selberg zeta function and a local trace formula for Kleinian groups, J. Reine Angew. Math. 410 (1990), 116–152. MR 1068802, 10.1515/crll.1990.410.116
  • 28. Peter A. Perry, Carnot geometry and the resolvent of the sub-Laplacian for the Heisenberg group, Comm. Partial Differential Equations 28 (2003), no. 3-4, 745–769. MR 1978313, 10.1081/PDE-120020495
  • 29. P. A. Perry, On the distribution of scattering poles for Kleinian groups (in preparation).
  • 30. A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. MR 0088511
  • 31. David Ruelle, Zeta-functions for expanding maps and Anosov flows, Invent. Math. 34 (1976), no. 3, 231–242. MR 0420720
  • 32. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 0228014, 10.1090/S0002-9904-1967-11798-1
  • 33. Maciej Zworski, Distribution of poles for scattering on the real line, J. Funct. Anal. 73 (1987), no. 2, 277–296. MR 899652, 10.1016/0022-1236(87)90069-3
  • 34. Maciej Zworski, Sharp polynomial bounds on the number of scattering poles of radial potentials, J. Funct. Anal. 82 (1989), no. 2, 370–403. MR 987299, 10.1016/0022-1236(89)90076-1
  • 35. Maciej Zworski, Sharp polynomial bounds on the number of scattering poles, Duke Math. J. 59 (1989), no. 2, 311–323. MR 1016891, 10.1215/S0012-7094-89-05913-9

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 58G25, 35P25, 58F20

Retrieve articles in all journals with MSC (1985): 58G25, 35P25, 58F20


Additional Information

DOI: http://dx.doi.org/10.1090/S0273-0979-1991-16024-6