

Donald L. Burkholder

University of Illinois at Urbana-Champaign

BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 25, Number 1, July 1991 ©1991 American Mathematical Society 0273-0979/91 $1.00 + $.25 per page

Diophantine equations (named after Diophantus of Alexandria) were studied much earlier than his time, especially in China. I
was astonished to learn that the Pell equation $x^2 - Dy^2 = 1$ had been solved as early as 3000 years ago in India. The fundamental solution of $x^2 - 8y^2 - 1$ is $9 - 8 \cdot 1 = 1$. For $D = 13$, the fundamental solution is $421201 - 13 \cdot 32400 = 1$. Since this solution appears in an ancient writing, an algorithm was known in prehistoric times.

In modern times, the idea of finding solutions in positive integers has been extended. For all sorts of polynomial and exponential equations, one looks for solutions in (some fixed) number field. It is believed that the only solution of $3^x - 2^y = 1$ is given by $9 - 8 = 1$, but I know no proof. If $a, b, c > 1$, the equation $a^x - b^y = c^z (x, y, z > 2)$ probably has only finitely many solutions. The famous Fermat equation is a special case. It is conjectured to have no solutions.

The Thue equation is $f(x, y) = k$, $k > 0$. Here $f(x, y)$ is a homogeneous polynomial in x, y with (say) integer coefficients. Shorey and Tijdeman proved that each such equation has only finitely many solutions. De Weger gives an algorithm for finding all solutions. For reasonably small values of k the algorithm is practicable with current technology.

Another problem is: solve $x + y = z^2$, where the prime divisors of xy are restricted to be among 2, 3, 5, 7. De Weger tabulates all solutions. The largest is $2^3 \cdot 3^7 \cdot 5^3 \cdot 7 + 1 = 13^2 \cdot 673^2$. Other large ones are $2^{12} + 3^3 \cdot 5 \cdot 7 = 71^2$, $2^5 \cdot 3^2 \cdot 5^2 \cdot 7 + 1 = 449^2$. The smallest are $3 + 1 = 4$, $2 + 2 = 4$.

J. L. Brenner
10 Phillips Road
Palo Alto, California 94303

The spirit of this book is captured in the following quotation from the introduction "The subject of Volterra equations in finite