Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Francis E. Burstall and John H. Rawnsley
Title: Twistor theory for Riemannian symmetric spaces
Additional book information: Springer-Verlag, Berlin and New York, 1990, 112 pp., $14.70. ISBN 3-540-52602-1.

References [Enhancements On Off] (What's this?)

  • 1. Robert L. Bryant, Conformal and minimal immersions of compact surfaces into the 4-sphere, J. Differential Geom. 17 (1982), no. 3, 455–473. MR 679067
  • 2. Robert L. Bryant, Lie groups and twistor spaces, Duke Math. J. 52 (1985), no. 1, 223–261. MR 791300,
  • 3. E. Calabi, Quelques applications de l'analyse complex aux surfaces d'aire minima, Topics in Complex Manifolds, Université de Montréal, 1967.
  • 4. J. Eells and J. C. Wood, Harmonic maps from surfaces to complex projective spaces, Adv. in Math. 49 (1983), no. 3, 217–263. MR 716372,
  • 5. Robert J. Baston and Michael G. Eastwood, The Penrose transform, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989. Its interaction with representation theory; Oxford Science Publications. MR 1038279
  • 6. A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121-138. MR 87176
  • 7. G. Harder and M. S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles over curves, Math. Ann. 212 (1975), 215-248. MR 364254
  • 8. Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
  • 9. S. A. Huggett and K. P. Tod, An introduction to twistor theory, London Mathematical Society Student Texts, vol. 4, Cambridge University Press, Cambridge, 1985. MR 821467
  • 10. Karen Uhlenbeck, Harmonic maps into Lie groups: classical solutions of the chiral model, J. Differential Geom. 30 (1989), no. 1, 1–50. MR 1001271
  • 11. R. S. Ward and Raymond O. Wells Jr., Twistor geometry and field theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1990. MR 1054377

Review Information:

Reviewer: Raymond O. Wells, Jr.
Journal: Bull. Amer. Math. Soc. 25 (1991), 454-457
American Mathematical Society