Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Semi-linear wave equations


Author: Michael Struwe
Journal: Bull. Amer. Math. Soc. 26 (1992), 53-85
MSC (2000): Primary 35L70
DOI: https://doi.org/10.1090/S0273-0979-1992-00225-2
MathSciNet review: 1093058
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We survey existence and regularity results for semi-linear wave equations. In particular, we review the recent regularity results for the $ {u^5}$-Klein Gordon equation by Grillakis and this author and give a self-contained, slightly simplified proof.


References [Enhancements On Off] (What's this?)

  • [1] P. Brenner, On $ {L_p}\, - \,{L_{p'}}$ estimates for the wave equation, Math. Z. 145(1975), 251-254. MR 0387819 (52:8658)
  • [2] P. Brenner and W. von Wahl, Global classical solutions of non-linear wave equations, Math. Z. 176 (1981), 87-121. MR 606174 (82m:35103)
  • [3] F. E. Browder, On nonlinear wave equations, Math. Z. 80 (1962), 249-264. MR 0147769 (26:5283)
  • [4] J. Ginibre and G. Velo, The global Cauchy problem for the non-linear Klein-Gordon equation, Math. Z. 189 (1985), 487-505. MR 786279 (86f:35149)
  • [5] -, Scattering theory in the energy space for a large class of non-linear wave equations, Comm. Math. Phys. 123 (1989), 535-573. MR 1006294 (90i:35172)
  • [6] M. G. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. of Math. (2) (to appear). MR 1078267 (92c:35080)
  • [7] F. John, Blow-up of solutions to nonlinear wave equations in three space dimensions, Manuscripta Math. 28 (1979), 235-268. MR 535704 (80i:35114)
  • [8] K. Jörgens, Das Anfangswertproblem im Grossen für eine Klasse nicht-linearer Wellengleichungen, Math. Z. 77 (1961), 295-308. MR 0130462 (24:A323)
  • [9] J. M. Lee and T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), 37-92. MR 888880 (88f:53001)
  • [10] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris 1969. MR 0259693 (41:4326)
  • [11] H. Pecher, Ein nichtlinearer Interpolationssatz und seine Anwendung auf nichtlineare Wellengleichungen, Math. Z. 161 (1978), 9-40. MR 499812 (81i:46039)
  • [12] J. Rauch, The $ {u^5}$-Klein-Gordon equation, (Brezis and Lions, eds.), Pitman Research Notes in Math., no. 53, pp. 335-364. MR 631403 (83a:35066)
  • [13] L. I. Schiff, Nonlinear meson theory of nuclear forces. I, Phys. Rev. 84 (1951), 1-9.
  • [14] I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. Math. France 91 (1963), 129-135. MR 0153967 (27:3928)
  • [15] J. Shatah, Weak solutions and the development of singularities in the $ SU(2)$ $ \sigma $-model, Comm. Pure Appl. Math. 41 (1988), 459-469. MR 933231 (89f:58044)
  • [16] W. Strauss, Nonlinear wave equations, CBMS Lecture Notes, no. 73, Amer. Math. Soc., Providence, RI, 1989. MR 1032250 (91g:35002)
  • [17] R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705-714. MR 0512086 (58:23577)
  • [18] M. Struwe, Globally regular solutions to the $ {u^5}$-Klein-Gordon equation, Ann. Sc. Norm. Sup. Pisa (Ser. 4) 15 (1988), 495-513. MR 1015805 (90j:35142)
  • [19] Y. Zheng, Concentration in sequences of solutions to the nonlinear Klein-Gordon equation, preprint, 1989. MR 1101227 (91m:35200)
  • [20] L. V. Kapitanskii, The Cauchy problem for a semi-linear wave equation (1989).
  • [21] J. Shatah and A. Tahvildar-Zadeh, Regularity of harmonic maps from Minkowski space into rotationally symmetric manifolds, Courant Institute, preprint, 1990. MR 1168115 (93c:58056)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 35L70

Retrieve articles in all journals with MSC (2000): 35L70


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1992-00225-2
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society