The Mackey-Gleason problem

Authors:
L. J. Bunce and J. D. Maitland Wright

Journal:
Bull. Amer. Math. Soc. **26** (1992), 288-293

MSC (2000):
Primary 46L50

DOI:
https://doi.org/10.1090/S0273-0979-1992-00274-4

MathSciNet review:
1121569

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let *A* be a von Neumann algebra with no direct summand of Type , and let be its lattice of projections. Let *X* be a Banach space. Let be a bounded function such that whenever *p* and *q* are orthogonal projections. The main theorem states that *m* has a unique extension to a bounded linear operator from *A* to *X*. In particular, each bounded complex-valued finitely additive quantum measure on has a unique extension to a bounded linear functional on *A*.

**[1]**J. F. Aarnes,*Quasi-states on algebras*, Trans. Amer. Math. Soc.**149**(1970), 601-625. MR**0282602 (43:8311)****[2]**L. J. Bunce and J. D. M. Wright,*Complex measures on projections in von Neumann algebras*, J. London Math. Soc. (2) (to appear). MR**1182483 (93j:46069)****[3]**-,*Continuity and linear extensions of quantum measures on Jordan operator algebras*, Math. Scand.**64**(1989), 300-306). MR**1037464 (91f:46096)****[4]**-,*The Mackey-Gleason problem for vector measures on projections in a von Neumann algebra*, submitted.**[5]**-,*Quantum logic, state space geometry and operator algebras*, Comm. Math. Phys.**96**(1984), 345-348. MR**769351 (86e:81017)****[6]**-,*Quantum measures and states on Jordan algebras*, Comm. Maths. Phys.**98**(1985), 187-202. MR**786572 (86k:46101)****[7]**E. Christensen,*Measures on projections and physical states*, Comm. Math. Phys.**86**(1982), 529-538. MR**679201 (85b:46072)****[8]**R. Cooke, M. Keane, and W. Moran,*An elementary proof of Gleason's Theorem*, Math. Proc. Cambridge Philos. Soc.**98**(1985), 117-128. MR**789726 (86h:46098)****[9]**A. M. Gleason,*Measures on the closed subspaces of a Hilbert space*, J. Math. Mech.**6**(1957), 885-893. MR**0096113 (20:2609)****[10]**J. Gunson,*Physical states on quantum logics*I, Ann. Inst. H. Poincaré**17**(1972), 295-311. MR**0336364 (49:1139)****[11]**G. W. Mackey,*The mathematical foundations of quantum mechanics*, Benjamin, 1963.**[12]**S. Maeda,*Probability measures on projections in von Neumann algebras*, Reviews in Mathematical Physics**1**(1990), 235-290. MR**1070091 (92m:46100)****[13]**A. Paszkiewicz,*Measures on projections in -factors*, J. Funct. Anal.**62**(1985), 87-117. MR**790772 (86m:46060)****[14]**M. Takesaki,*Theory of operator algebras*, Springer, 1979. MR**548728 (81e:46038)****[15]**F. J. Yeadon,*Finitely additive measures on projections in finite -algebras*, Bull. London Math. Soc.**16**(1984), 145-150. MR**737242 (85i:46087)****[16]**-,*Measures on projections in -algebras of Type*, Bull. London Math. Soc.**15**(1983), 139-145. MR**689246 (84g:46089)**

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC (2000):
46L50

Retrieve articles in all journals with MSC (2000): 46L50

Additional Information

DOI:
https://doi.org/10.1090/S0273-0979-1992-00274-4

Article copyright:
© Copyright 1992
American Mathematical Society