Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Spectral theory and representations of nilpotent groups


Authors: P. Levy-Bruhl, A. Mohamed and J. Nourrigat
Journal: Bull. Amer. Math. Soc. 26 (1992), 299-303
MSC (2000): Primary 35P20; Secondary 22E27, 35J10
MathSciNet review: 1129314
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give an estimate of the number $ N(\lambda )$ of eigenvalues $ < \lambda $ for the image under an irreducible representation of the "sublaplacian" on a stratified nilpotent Lie algebra. We also give an estimate for the trace of the heat-kernel associated with this operator. The estimates are formulated in term of geometrical objects related to the representation under consideration. An important particular case is the Schrödinger equation with polynomial electrical and magnetical fields.


References [Enhancements On Off] (What's this?)

  • [1] Charles L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 129–206. MR 707957, 10.1090/S0273-0979-1983-15154-6
  • [2] Bernard Helffer and Jean Nourrigat, Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, Progress in Mathematics, vol. 58, Birkhäuser Boston, Inc., Boston, MA, 1985 (French). MR 897103
  • [3] Karasev and V. Maslov, Algebras with general commutation relations and their applications II, J. Soviet Math. 15 (3) (1981), 273-368.
  • [4] A. Kirillov, Unitary representations of nilpotent groups, Russian Math. Survey 14 (1962), 53-104.
  • [5] Pierre Gilles Lemarié, Base d’ondelettes sur les groupes de Lie stratifiés, Bull. Soc. Math. France 117 (1989), no. 2, 211–232 (French, with English summary). MR 1015808
  • [6] P. Lévy-Bruhl, A. Mohamed and J. Nourrigat, Etude spectale d'opérateurs sur des groupes nilpotents, Séminaire "Equations aux Dérivées Partielles", École Polytechnique (Palaiseau), Exposé 18, 1989-90; preprint, 1991.
  • [7] D. Manchon, Formule de Weyl pour les groupes de Lie nilpotents, Thèse, Paris, 1989.
  • [8] Yves Meyer, Ondelettes et opérateurs. I, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1990 (French). Ondelettes. [Wavelets]. MR 1085487
  • [9] A. Mohamed and J. Nourrigat, Encadrement du 𝑁(𝜆) pour un opérateur de Schrödinger avec un champ magnétique et un potentiel électrique, J. Math. Pures Appl. (9) 70 (1991), no. 1, 87–99 (French). MR 1091921
  • [10] Jean Nourrigat, Inégalités 𝐿² et représentations de groupes nilpotents, J. Funct. Anal. 74 (1987), no. 2, 300–327 (French). MR 904821, 10.1016/0022-1236(87)90027-9
  • [11] A. Perelomov, Generalized coherent states and their applications, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1986. MR 858831
  • [12] L. Pukanszki, Leçons sur les représentations des groupes, Dunod, Paris, 1967.
  • [13] B. Simon, Non classical eigenvalue asymptotics, J. Funct. Anal. 53 (1983), 84-98.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 35P20, 22E27, 35J10

Retrieve articles in all journals with MSC (2000): 35P20, 22E27, 35J10


Additional Information

DOI: http://dx.doi.org/10.1090/S0273-0979-1992-00281-1
Keywords: Representations of nilpotent Lie groups, spectral theory for partial differential equations
Article copyright: © Copyright 1992 American Mathematical Society