Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

The Green function of Teichmüller spaces with applications


Author: Samuel L. Krushkal
Journal: Bull. Amer. Math. Soc. 27 (1992), 143-147
MSC (2000): Primary 30C75; Secondary 31C10, 32G15
DOI: https://doi.org/10.1090/S0273-0979-1992-00294-X
MathSciNet review: 1142683
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe briefly a new approach to some problems related to Teichmüller spaces, invariant metrics, and extremal quasiconformal maps. This approach is based on the properties of plurisubharmonic functions, especially of the plurisubharmonic Green function.

The main theorem gives an explicit representation of the Green function for Teichmüller spaces by the Kobayashi-Teichmüller metric of these spaces. This leads to various applications. In particular, this gives a new characterization of extremal quasiconformal maps.


References [Enhancements On Off] (What's this?)

  • [1] K. Azukawa, The invariant pseudo-metric related to negative plurisubharmonic functions, Kodai Math. J. 10 (1987), 83-92. MR 879385 (88e:32035)
  • [2] J.-P. Demailly, Mesures de Monge-Ampére et mesures plurisubharmoniques, Math. Z. 194 (1987), 519-564. MR 881709 (88g:32034)
  • [3] C. J. Earle, The Teichmüller distance is differentiable, Duke Math. J. 44 (1977), 389-397. MR 0445013 (56:3358)
  • [4] C. J. Earle, I. Kra, and S. L. Krushkal, Holomorphic motions and Teichmüller spaces, Cornell Univ., preprint 1991. MR 1214783 (94h:32035)
  • [5] F. P. Gardiner, Teichmüller theory and quadratic differentials, Wiley Interscience, New York, 1987. MR 903027 (88m:32044)
  • [6] R. S. Hamilton, Extremal quasiconformal mappings with prescribed boundary values, Trans. Amer. Math. Soc. 138 (1969), 399-406. MR 0245787 (39:7093)
  • [7] M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France 113 (1985), 231-240. MR 820321 (87d:32032)
  • [8] S. L. Krushkal, Quasiconformal mappings and Riemann surfaces, Winston, Washington, D.C.; Wiley, New York, 1979. MR 536488 (80j:30025)
  • [9] -, Strengthening pseudoconvexity of finite dimensional Teichmüller spaces, Math. Ann. 290 (1991), 681-687. MR 1119946 (92g:32044)
  • [10] S. L. Krushkal and R. Kühnau, Quasikonforme Abbildungen-neue Methoden und Anwendungen, Teubner-Texte Math., vol. 54, Teubner, Leipzig, 1983. MR 730760 (85k:30032b)
  • [11] P. Lelong, Fonction de Green pluricomplexe et lemmes de Schwarz dans les espaces de Banach, J. Math. Pures Appl. 69 (1989), 319-347. MR 1025907 (91c:46065)
  • [12] S. Nag, The complex analytic theory of Teichmüller spaces, Wiley Interscience, New York, 1988. MR 927291 (89f:32040)
  • [13] M. Nishihara, K. S. Shon and N. Sugawara, On pseudo-metrics and their indicatrices in balanced open subsets of a locally convex space, Math. Rep. Toyama Univ. 9 (1986), 109-136. MR 864804 (87k:32047)
  • [14] E. A. Poletskii and B. V. Shabat, Invariant metrics, Several Complex Variables III, Geometric Function Theory, Encyclopedia Math. Sci. (G.M. Henkin, eds.), 9, Springer, Berlin, Heidelberg and New York, 1989, pp. 63-111.
  • [15] E. Reich and K. Strebel, Extremal quasiconformal mappings with given boundary values, Contribution to Analysis, Academic Press, New York and London, 1974, pp. 375-391. MR 0361065 (50:13511)
  • [16] H. L. Royden, Automorphisms and isometries of Teichmüller space, Advances in the Theory of Riemann Surfaces, Ann. of Math. Stud., 66, Princeton Univ. Press, Princeton, NJ, 1971, pp. 369-383. MR 0288254 (44:5452)
  • [17] Z. Slodkowski, Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc. 111 (1991), 374-355. MR 1037218 (91f:58078)
  • [18] K. Strebel, Extremal quasiconformal mappings, Results in Math. 10 (1986), 169-210. MR 869809 (88a:30048)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 30C75, 31C10, 32G15

Retrieve articles in all journals with MSC (2000): 30C75, 31C10, 32G15


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1992-00294-X
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society