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The subject of this remarkable book is, as its title indicates, discrete subgroups

of semisimple Lie groups. Before describing these objects, it will be useful to

recall some basic ideas about Lie groups themselves.

Lie groups arise in a wide variety of situations in geometry and algebra. Be-

ing by definition those groups that admit a compatible manifold structure, they

arise in geometry as, roughly speaking, the finite-dimensional transformation

groups of manifolds or, somewhat more precisely, as the transformation groups

of manifolds that can be given locally by finitely many real parameters. While

the full diffeomorphism group of a manifold is too large to be finite dimen-

sional with respect to natural topologies, there are many situations where one

encounters subgroups that are finite-dimensional Lie groups. One of the most

important such geometric situations is that of the isometry group of a Rieman-

nian manifold. In this case it is a classical result of Myers and Steenrod that

the isometry group is always a Lie group. The same is true for the symmetry

group of certain other classes of geometric structures, e.g., pseudo-Riemannian

manifolds, and conformai structures in dimensions at least 3. While there are

many natural geometric structures for which the full symmetry group is not nec-

essarily finite dimensional (e.g., volume forms, symplectic structures, complex

structures) it is of interest in these cases to understand the finite-dimensional

symmetry groups and to understand conditions under which the full symmetry

group will be finite dimensional. In an algebraic setting Lie groups arise in a
similar manner. The general linear group of a real or complex finite-dimensional

vector space is a Lie group. (Of course one can consider this as simply a further

example of the symmetry group of a structure on a manifold, namely, a vector

space structure.) Closed subgroups will also be Lie groups and, in particular, a

subgroup that is the stablizer of any one of the natural objects associated to a

vector space will be a Lie group. For example, this is the case for the stabilizer

of a tensor, a subspace, a flag, etc. While it is not true that every Lie group

(even a connected one) is isomorphic to a linear group (i.e., a subgroup of some
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general linear group), it is a striking fact that every Lie group is actually locally

isomorphic to a linear group.

When one begins to classify Lie groups in terms of their algebraic structure,

one is led naturally to the class of semisimple Lie groups, which can be de-

scribed as those that are locally products of simple Lie groups, and where a
simple Lie group is one of dimension at least 2 and with no nontrivial con-

nected normal subgroup. The basic examples of such groups are SL(F) (the

special linear group), and the subgroups leaving invariant a nondegenerate form

that is either bilinear and symmetric, Hermitian, or symplectic. While this is

one basic manner in which these groups appear algebraically, they appear in a

very striking way in geometry; namely, among the Riemannian manifolds there

is the very natural class of symmetric spaces. These are the simply connected
complete Riemannian manifolds with the property that the sectional curvature

is invariant under parallel translation. (The standard definition allows a some-

what more general class, including some nonsimply connected spaces. However,

this definition will suffice for the purposes of this review.) This obviously in-

cludes the complete simply connected spaces of constant curvature but contains

many other Riemannian manifolds as well. It is a basic fact that the isometry

group of a symmetric space [which one knows (although we are not being his-

torically faithful here) is a Lie group by the Myers-Steenrod theorem] is in fact

a semisimple Lie group (acting transitively) as long as there is not a direct factor

that is a Euclidean space and that conversely every semisimple Lie group arises

locally as the (transitive) isometry group of a Riemannian symmetric space with

no Euclidean direct factor. Semisimple Lie groups are not just locally linear in

some abstract manner but very concretely via a canonical representation (the

adjoint representation on the Lie algebra). This linear realization allows one

to understand the structural and representation theoretic properties of these

groups in great detail. While these are useful in virtually all situations in which

semisimple groups arise, they in particular have natural geometric meaning in

terms of the symmetric space associated to the group and, in fact, yield a very

fine understanding of the geometric properties of symmetric spaces. This theory

can be viewed as a very successful linearization or algebraization of the natural

geometric problem of understanding the geometry of symmetric spaces.

Once one considers linear Lie groups one can ask whether or not the group

is (real) algebraic, i.e., not only a submanifold of GL(F) but (the real points

of) a subvariety (defined over R). In other words, one asks if the group can be

given as the set of zeros of a family of polynomial functions rather than only

smooth functions. The advantage of this is, of course, that one can bring to

bear the apparatus of commutative algebra and algebraic geometry. Not every

Lie group is locally isomorphic to a real algebraic group. For the examples of

semisimple groups described above, namely, those preserving a suitable form

or the determinant, it is essentially immediate from the definition that these

groups are algebraic. Furthermore, from some basic results about Lie algebras

it follows easily that for semisimple Lie groups in general the canonical (local)

linear realization given by the adjoint representation exhibits the group as be-

ing locally isomorphic to an algebraic one. In addition, one can show that this

structure of an algebraic group is essentially unique over the complex numbers.

Given an algebraic group (say over R), one can ask when it has a Ar-structure,

where A: is a subfield.  This means that there is a linear realization in which
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the group is given by the set of zeros of a family of polynomials with coeffi-

cients in k . There are examples of Lie groups that are real algebraic groups but

which have no Q-structure. However, every semisimple algebraic group admits

a Q-structure. This is clear for the above examples (simply by taking the rele-

vant form to have rational coefficients), and, in general, it follows by a careful

analysis of the adjoint representation. However, this Q-structure is no longer

unique. The study of the A;-structures on a semisimple algebraic group where

k is an algebraic number field is a basic and difficult problem in the "arithmetic

theory" of algebraic groups. We shall see its relevance to discrete subgroups and

geometry in a moment.

We now turn to the subject of the book at hand, namely, discrete subgroups.

These also occur in a variety of ways, but we shall focus on two salient situa-

tions. Suppose we consider locally symmetric spaces, namely, those complete

Riemannian manifolds with sectional curvature invariant under parallel transla-

tion. Thus, these differ from symmetric spaces only in that we no longer assume

simple connectivity. This class now includes all complete (e.g., compact) mani-

folds of constant curvature. The universal covering space of a locally symmetric

space is symmetric, and hence we can view any locally symmetric space M as
X/D where X is symmetric and D is the fundamental group of M acting as

isometries of the space X. In particular, D is a subgroup of the isometry group

of X, which as we have observed as a Lie group, and it is easy to see from this

construction that D is in fact discrete. Conversely, given any discrete subgroup

D of the isometry group that is torsionfree, we can form the quotient X/D,

which will be a locally symmetric space with fundamental group D. (The con-

dition that D be torsionfree can always be achieved by passing to a subgroup

of finite index. For the remainder of our discussion, we shall ignore this tech-

nicality.) In other words, understanding the discrete subgroups of a semisimple

Lie group is tantamount to understanding the fundamental groups of locally

symmetric spaces that are covered by the symmetric space corresponding to the

Lie group. In many cases of interest, for example, if the semisimple group is a

product of noncompact simple groups, then the symmetric space can be shown

to be contractible, and hence the fundamental group of the locally symmetric

space M carries all the homotopy information of M. From the point of view

of geometry, we can view understanding the relation of a discrete subgroup D

to the ambient semisimple group G as a version of the question of understand-

ing the relationship between the topology of M (via the fundamental group

D) and the local geometry of a locally symmetric space M (incorporated in G

via the universal cover of M). Of particular interest is of course the case in

which M is compact, which is equivalent to D being a cocompact subgroup of

G (i.e., G/D is compact). A more general situation is one in which M is not

necessarily compact but has finite volume, which corresponds to G/D being of

finite volume with respect to the Haar measure on G. In this case D is called

a lattice in G.
The simplest algebraic setting in which discrete subgroups arise is most easily

illustrated by considering the subgroups D = SL(«, Z) in SL(«, R). Discrete-

ness, of course, follows from the discreteness of Z in R. In this case it is a

classical result that D is a lattice but is not cocompact. For n = 2 both of these

assertions are easily seen from the standard fundamental domain for SL(2, Z)

in the upper half plane. This example can be generalized and illuminated by
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the following general construction. Suppose G is a semisimple algebraic group

with a Q-structure. Let D be the elements of G that consist of matrices with

integer entries. Then D is a lattice subgroup of G that may or may not be

cocompact. (This is due to Borel and Harish-Chandra.) The group D is ac-

tually not quite uniquely determined by the Q-structure. Namely, if one has

two different Q-structures that are isomorphic in the natural sense, then the

corresponding discrete subgroups will be commensurable, in the sense that the

intersection is of finite index in each of them. Thus, a Q-structure on G deter-

mines a commensurability class of lattices in G, and such a discrete subgroup

is called an arithmetic subgroup of G. More generally, instead of a Q-structure
one can consider a A:-structure where k is an algebraic number field, and the

subgroup of G consisting of matrices with entries in ¿f, the algebraic integers

in k . Since (9 is no longer necessarily discrete in C, this will not, in general,

yield a discrete subgroup of G. However, in certain readily describable situ-

ations this group will actually be discrete, and subgroups commensurable with

these groups are also called arithmetic subgroups of G. (In the cases in which

the subgroup is not discrete, it will in fact be an arithmetic lattice in a larger

group, namely, one that is a product of G with another explicitly describable

semisimple group.) Summarizing, we see that Q-structures, and in some cases

Ac-structures, define a class of lattices, namely, the arithmetic ones. By their very

construction, these groups arise naturally in a wide variety of number theoretic

problems, and the properties of these groups and their relation to G is a basic

issue in number theory. From the geometric point of view, one can expect that

arithmetic lattices will be more tractable than a general lattice, by virtue of the

explicit nature of their construction. This can be nicely illustrated by volume

computations, where one can compute the volume of the associated locally sym-

metric space in terms of the algebraic data defining the arithmetic group and

try to make statements about the collection of all such volumes.

While the above discussion hopefully provides some motivation for the study

of lattice subgroups (or at least the plausibility that such motivation abounds),

we now discuss some of the specific questions about these groups that Margulis

considers in his book. These questions are, generally speaking, those funda-

mental questions to which Margulis himself provided the answer in the 1970s

with his dramatic and systematic use of ergodic theoretic and related techniques

in resolving issues that had resisted more (at the time) traditional approaches,

as well as some background results needed for this development. A general

perspective on lattice subgroups is that in many cases, one would expect to

see manifestations of properties of the ambient semisimple group reflected in

properties of the lattice subgroup. (In light of our discussion above, this is an

algebraic version of the geometric idea that one should see the influence of the

local geometry of a manifold on the structure and properties of the fundamental

group.) For many issues, this manifestation is strongest in the case of semisim-

ple groups of real rank at least 2. This means that there is a locally isomorphic

real linear group that contains a two-dimensional subgroup of diagonal matri-

ces. This includes SL(«, R) for n > 2 but excludes SL(2, R). Similarly,
it includes SO{p, q) forp + q>4 and p, q > 1 but excludes the groups

SO(l, n). The deepest results Margulis describes are for lattices in groups with
this property. Many of the results, either explicitly or implicitly, center around

identifying or at least describing salient features of homomorphisms of a lattice
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D into some other class of natural groups. For example, Margulis describes his

superrigidity theorem, identifying the finite-dimensional linear representations

of lattices, and allowing him to establish arithmeticity of a large class of lattices.

He studies surjections onto a class of discrete groups, allowing him to show that

the normal subgroups of many lattices are either finite or of finite index. He

also studies homomorphisms into automorphism groups of trees, allowing him

to show that a large class of lattices cannot be written as a nontrivial amalga-
mated product. The unifying theme in his approach to many of these results

is first to reduce them to issues regarding the action of D on natural algebraic

homogeneous spaces of G and then to study the relevant properties of this ac-

tion. The properties that arise and the techniques used to study these actions

are those of ergodic theory (i.e., the measure theoretic properties of group ac-

tions) and related dynamical techniques that are among the natural techniques

for studying actions of noncompact groups in general and discrete groups act-

ing on homogeneous spaces in particular. Margulis also develops the relevant

ergodic theoretic machinery in this book.
To give some further flavor of the nature of the results, we briefly discuss

as an example Margulis' arithmeticity theorem. Margulis provides a complete

discussion of his proof of the assertion that for groups of real rank at least 2,

all lattices are arithmetic, i.e., given by the construction outlined above. [Ac-
tually, one needs to make a further technical assumption ("irreducibility") to

avoid the situation of a product of lattices in a product of rank one groups.]

This remarkable theorem, which Margulis proved in 1974, provides in princi-

ple an algebraization of the problem of understanding the fundamental groups

of locally symmetric spaces (of rank at least 2). As we indicated above, the

classical theory of symmetric spaces shows how to describe symmetric spaces
algebraically, Margulis's theorem brings the same sort of order to the locally

symmetric spaces, at least to the extent that one can effectively describe the
relevant Ac-structures on the ambient semismple groups. (We should remark

here that this latter problem is itself highly nontrivial, involves a large amount

of arithmetic work, and is not dealt with in this book.) The proof of arith-
meticity follows by purely algebraic arguments from enough knowledge of the

finite-dimensional linear representation theory of D. The required represen-

tation theoretic information is contained in Margulis's superrigidity theorem,

which asserts roughly that every representation of D over a local field can be

understood in terms of representations that extend continuously to G or in

terms of representations with precompact image. It is in proving this result that

Margulis uses and develops ergodic theoretic arguments.

The book is very carefully written and, except for some results on algebraic
groups, is self-contained. Margulis works in a very general framework, consid-

ering not only semisimple Lie groups but products of semisimple Lie groups

over varying local fields and discrete subgroups of these groups. The book is

both accessible (particularly to those with algebraic background) and, by virtue

of its high level of completeness, will serve as an excellent reference as well.

In addition to the central results and themes in the book there is a wealth of

other information, including new and simpler proofs of many known results.

The book will no doubt instantly become a classic in the field.
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