Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Negatively Ricci curved manifolds


Author: Joachim Lohkamp
Journal: Bull. Amer. Math. Soc. 27 (1992), 288-291
MSC (2000): Primary 53C21; Secondary 57R99
DOI: https://doi.org/10.1090/S0273-0979-1992-00325-7
MathSciNet review: 1161276
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we announce the following result: "Every manifold of dimension $ \geq \,3$ admits a complete negatively Ricci curved metric." Furthermore we describe some sharper results and sketch proofs.


References [Enhancements On Off] (What's this?)

  • [A] T. Aubin, Métriques riemanniennes et courbure, J. Differential Geom. 4 (1970), 383-424. MR 0279731 (43:5452)
  • [BK] J. Bland and M. Kalka, Negative scalar curvature metrics on noncompact manifolds, Trans. Amer. Math. Soc. 316 (1989), 433-446. MR 987159 (90f:53072)
  • [Bg] J. P. Bourguignon, Ricci curvature and Einstein metrics, Global Differential Geometry, Lecture Notes in Math., vol. 838, Springer, New York, 1981, pp. 42-63. MR 636265 (83c:53056)
  • [Br1] R. Brooks, A construction of metrics of negative Ricci curvature, J. Differential Geom. 29 (1989), 85-94. MR 978077 (90c:53099)
  • [G] L. Z Gao, The construction of negatively Ricci curved manifolds, Math. Ann. 271 (1985), 185-208. MR 783551 (86h:53044)
  • [GY] L. Z. Gao and S. T. Yau, The existence of negatively Ricci curved on three manifolds, Invent. Math. 85 (1986), 637-652. MR 848687 (87j:53061)
  • [Gr] M. Gromov, Structures métriques pour les variétés riemanniennes, Editions CEDIC, Paris, 1981. MR 682063 (85e:53051)
  • [K] J. L. Kazdan, Prescribing the curvature of a Riemannian manifold, CBMS Regional Conf. Ser. in Math., vol. 57, Conf. Board Math. Sci., Washington, DC, 1985. MR 787227 (86h:53001)
  • [T] W. Thurston, The geometry and topology of three manifolds, Princeton Lecture Notes, vol. 57, Princeton, NJ, 1980.
  • [Y] S. T. Yau, Seminar on differential geometry, problem section, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, NJ, 1982. MR 645762 (83e:53029)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 53C21, 57R99

Retrieve articles in all journals with MSC (2000): 53C21, 57R99


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1992-00325-7
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society