VOICULESCU THEOREM, SOBOLEV LEMMA, AND EXTENSIONS OF SMOOTH ALGEBRAS

XIAOLU WANG

Dedicated to the memory of Xian-Rong Wang

Abstract. We present the analytic foundation of a unified B-D-F extension functor Ext_r on the category of noncommutative smooth algebras, for any Fréchet operator ideal \mathcal{H}. Combining the techniques devised by Arveson and Voiculescu, we generalize Voiculescu's theorem to smooth algebras and Fréchet operator ideals. A key notion involved is r-smoothness, which is verified for the algebras of smooth functions, via a noncommutative Sobolev lemma. The groups Ext_r are computed for many examples.

1. Introduction

For a compact manifold M, the extensions of $C(M)$ by the compact operators $\mathcal{H}(\mathcal{H})$ form an abelian group $\text{Ext}(M)$, coinciding with the odd K-homology $K^1(M)$ [BDF], which can also be defined in terms of the elliptic operators [Al]. This was a starting point of [K].

For a Schatten ideal L^p, the notion of L^p-smooth elements in $\text{Ext}(M)$ was introduced and studied in [D, DV], and generalized in [S1, G]. Connes constructed the Chern character of extensions of smooth algebras by L^p in the cyclic cohomology of the smooth algebras [C]. When $p = 1$ it recovers the trace forms in [HH, CP].

Today Ext-theory for C^*-algebras has developed into a multifaced field of fundamental importance in modern analysis, as the meeting ground of classical operator theory, in particular Toeplitz operators, Wiener-Hopf operators, and noncommutative differential geometry [C], especially pseudodifferential operators, index theory, K-theory, and cyclic homology.

While our knowledge of topological Ext-theory is rather complete, a natural and fundamental problem [A2, p. 9; D, p. 68; HH, p. 236] remains wide open in noncommutative differential geometry, i.e., the formulation and understanding of the extension theories of smooth algebras. It would naturally serve as the domain of the Chern character defined in [C]. Since smooth algebras are Fréchet algebras, it is desirable to have the extension theory constructed for Fréchet operator ideals.

In this note we present the analytical foundation of such a general theory, which produces a functor Ext_r from the category of smooth algebras to abelian groups, for any Fréchet operator ideal \mathcal{H} [P; W1, 10.11]. Such a theory will

Received by the editors March 24, 1992.

1991 Mathematics Subject Classification. Primary 46L80; Secondary 47B10, 19K33, 47B10, 46L87, 46J15, 46M20.

Key words and phrases. Fréchet algebra, smooth extension, operator ideal, r-smooth completely positive map, quasi-central approximate identity.

This research was supported in part by U.S. National Science Foundation grant DMS9012753.
establish a unified framework into which all previous results in this direction fit.

There are two well-known technical results forming the cornerstone of Brown-
Douglas-Fillmore theory. One is the celebrated Voiculescu’s theorem [V1],
which generalizes Weyl-von Neumann-Berg theorem to \(C^* \)-algebras. In [V2]
it is extended to normed ideals and algebras with countable bases. The other
is Stinespring’s theorem [S]. We generalize both theorems to Fréchet ideals and
smooth algebras, answering a question in [D], and we illustrate the theory in
the case of smooth manifolds.

2. Smooth category and Voiculescu’s theorem

By a smooth algebra we mean a Fréchet \(*\)-algebra \(A^\infty \) equipped with a
norm \(p \) such that \(p(a^*a) = p(a)^2 \) for all \(a \in A^\infty \). Often it is denoted as a
pair \((A^\infty, A) \), where \(A \) is the \(C^* \)-completion of \(A^\infty \) with respect to \(p \). A
prototype is \((C^\infty(M), C(M)) \) for a compact smooth manifold.

The smooth category is the category of all separable smooth algebras, with
morphisms given by \(*\)-homomorphisms of Fréchet \(*\)-algebras while contractive
with respect to the \(C^* \)-norms.

There are two key ingredients in our analysis. Both can be taken for granted
for \(C^* \)-algebras. One is the existence of quasi-central approximate identity,
identified in [Ar, V2]. The other is \(\tau \)-smoothness, which had not appeared in
literature until now.

We say a completely positive map \(\phi: A^\infty \to \mathcal{L}(\mathcal{H}) \) is \(\tau \)-quasi-central, if
there is an increasing sequence \(\{k_m\} \) of finite rank positive operators strongly
converging to 1 such that

\[
\lim_{m \to \infty} [k_m, \phi(a)] = 0 \quad \text{in} \quad \mathcal{H} \quad \text{for every} \quad a \in A^\infty.
\]

Let \((A^\infty, A)\) be a smooth algebra with a dense \(*\)-subalgebra \(A^0 \), which
is countably generated as a vector space. A completely positive map \(\phi \) from
\((A^\infty, A)\) into \(\mathcal{L}(H) \) is \(\tau \)-smooth (or \(\mathcal{H} \)-smooth) with respect to \(A^\infty \), if the
following property holds:

If \(\phi_0 \) is a completely positive map from \(A \) into \(\mathcal{L}(H) \) such that

\[
(\phi - \phi_0)(A^\infty) \subset \mathcal{H}^\tau(H),
\]

then

\[
(\phi - \phi_0)(A^\infty) \subset \mathcal{H}^\tau(H).
\]

For \((A^\infty, A) \subset \mathcal{L}(\mathcal{H})\), if we add \((\phi - \phi_0)(A^\infty \cap \mathcal{H}^\tau(\mathcal{H})) \subset \mathcal{H}^\tau(H)\) in (1),
then we obtain the definition of a \(\tau \)-smooth mod \(\mathcal{H}^\tau \) (or \(\mathcal{H} \)-smooth mod \(\mathcal{H} \))
map.

A smooth operator algebra \((A^\infty, A)\) is called \(\tau \)-smooth (or \(\tau \)-smooth
mod \(\mathcal{H}^\tau \)) if the map \(\text{id}_{A^\infty} \) is so. The following is the generalized Voiculescu’s
theorem.

Theorem 1. Let \((A^\infty, A)\) be a separable operator algebra \(\tau \)-smooth mod \(\mathcal{H}^\tau \) in
\(\mathcal{L}(\mathcal{H}) \). Let \(\pi \) be a nondegenerate \(\tau \)-quasi-central representation of \((A^\infty, A)\)
into \(\mathcal{L}(\mathcal{H}) \) such that \(\pi|_{A^\infty \cap \mathcal{H}^\tau(\mathcal{H})} = 0 \). Then there are unitaries \(U_n: \mathcal{H} \to \mathcal{H} \oplus \mathcal{H} \)
such that

\[
(U_n^*(a \oplus \pi(a))U_n - a) \in \mathcal{H}^\tau(\mathcal{H}) \quad \text{for every} \quad a \in A^\infty,
\]

\[
\lim(U_n^*(a \oplus \pi(a))U_n - a) = 0 \quad \text{in} \quad \mathcal{H}^\tau(\mathcal{H}) \quad \text{for every} \quad a \in A^0\infty.
\]
Restricting the ideal \mathcal{H}_τ and A^∞ to various categories, one recovers all the previous results in this direction. The idea of the proof is an extension of the techniques invented in [Ar] and [V2] for Fréchet algebras.

3. Smooth extensions

A τ-smooth extension of (A^∞, A) is a pair (π, P), where π is a representation of A in a Hilbert space \mathcal{H} and P is a projection in \mathcal{H} such that (i) $[\pi(a), P] \in \mathcal{H}(\mathcal{H})$ for $a \in A^\infty$, and (ii) $P\pi(A)P \cap \mathcal{H}(\mathcal{H}) = \{0\}$.

Define a completely positive map $\phi(a) := P\pi(a)P$, $a \in A$. Then $E^\infty := \phi(A^\infty) + \mathcal{H}_\tau$ is a Fréchet $*$-algebra with the locally convex final topology induced by the maps $i: \mathcal{H}_\tau \to E^\infty$ and ϕ, and (E^∞, E) is a smooth operator algebra with a dense $*$-subalgebra $E_0^\infty := \phi(A_0^\infty) + \mathcal{H}_\tau$ countably generated as a vector space.

Two τ-smooth extensions are unitarily equivalent if the two associated completely positive maps on A^∞ are unitarily conjugate up to \mathcal{H}_τ-compact perturbation. A τ-smooth extension is degenerated if it is unitarily equivalent to a representation.

Let $\mathcal{E}xt_\tau(A^\infty)$ be the unitary equivalence classes of the τ-smooth extensions of A^∞. A spatial isomorphism $M_2(\mathcal{L}(\mathcal{H})) \simeq \mathcal{L}(\mathcal{H})$ turns $\mathcal{E}xt_\tau(A^\infty)$ into an abelian semigroup. The quotient abelian monoid modulo the degenerate extensions will be denoted by $\text{Ext}_\tau(A^\infty)$.

We shall denote by $\mathcal{E}xt_{\tau,\tau'}(A^\infty)$ those represented by τ-smooth completely positive maps. Replacing $\mathcal{E}xt_\tau$ by $\mathcal{E}xt_{\tau,\tau'}$ in the above, we get the submonoid $\text{Ext}_{\tau,\tau'}(A^\infty)$ of those consisting of τ-smooth completely positive maps. By a refinement of Stinespring's theorem [S], we can show that Ext_τ is a contravariant functor from the category of smooth algebras to the category of abelian groups.

If τ is finer than τ', there is a natural transformation $\alpha_{\tau,\tau'}$ from Ext_τ to $\text{Ext}_{\tau'}$. In particular, there is a natural transformation α_τ from Ext_τ to the B-D-F functor Ext for any τ. Theorem 1 implies

Corollary. If every extension in $\mathcal{E}xt_\tau(A^\infty)$ can be represented by a τ-smooth completely positive map and is τ-quasi-central if it is degenerate, then there is a natural isomorphism of abelian groups

$$\text{Ext}_\tau(A^\infty) \simeq \mathcal{E}xt_\tau(A^\infty).$$

We check the two conditions above for the case of commutative smooth algebras (A^∞, A) where $A = C(M)$, for a compact smooth manifold M of dimension n. We may assume M is embedded in \mathbb{R}^N ($N \leq 2n$, by Whitney's theorem). From the deep results in [V2], we have

Theorem 2 (Voiculescu). Notation is as above. All degenerated smooth extensions of (A^∞, A) by \mathcal{L}^N are \mathcal{L}^N-quasi-central.

For the other condition we have

Theorem 3. Let M be a compact $C^{(k)}$-manifold of dimension n. For any Fréchet operator ideal \mathcal{H}_τ, any completely positive map defining extensions of $C^{(n+2+\varepsilon)}(M)$ by \mathcal{H}_τ is always τ-smooth, for any $\varepsilon > 0$. Here we assume $k \geq n + 2 + \varepsilon$.

The key step in the proof is the following noncommutative Sobolev lemma. It implies that if a sequence (a_{m_1, \ldots, m_n}) belongs to a Sobolev space H_τ for
sufficiently large s, then the quantized generalized function determined by $(a_{m_1}, \ldots, a_{m_s})$ converges in the τ-smooth quantized Fréchet algebra.

Lemma. Let (A^∞, A) be a commutative smooth algebra with n generators $\{x_1, \ldots, x_n\}$, such that

1. The C^*-norm $\|x_j\| \leq 1$, for all $j = 1, \ldots, n$;
2. Any element in A^∞ has the form

$$f = \sum_{(m_1, \ldots, m_n) \in \mathbb{Z}^n} a_{m_1, \ldots, m_n} x_1^{m_1} \cdots x_n^{m_n},$$

such that

$$\sum_{(m_1, \ldots, m_n) \in \mathbb{Z}^n} a_{m_1, \ldots, m_n} (|m_1| + \cdots + |m_n|)^2 < \infty.$$

For any Fréchet operator ideal \mathcal{H}, let ϕ be the completely positive map associated to any τ-smooth extension of (A^∞, A). Then ϕ is τ-smooth.

4. Examples

1. Let $A = C(X)$ where X is a compact, second countable, totally disconnected space. Then A has a single generator. If A^∞ also does, then $\text{Ext}_{\tau}(A^\infty) = 0$.

2. Let $A = A^\infty = C(S^1)$. There is a representation $\pi : A \to L^1(H)$ defining a degenerate τ-smooth extension, which is \mathcal{H}-smooth but not L^1-smooth as a completely positive map. Thus Ext_{L^1} is not a compatible functor for the category of C^*-algebras.

3. For any $p > 1$, there is a degenerate faithful representation of $(L^1(T), C^*(T))$ defining a L^p-smooth extension, which is not L^p-smooth as a completely positive map.

This shows that if $A = C^*(G)$ for a compact Lie group G, $L^1(G)$ is too large a smooth subalgebra. One needs to take, for example $C^\infty_c(G)$ instead.

4. For any operator ideal \mathcal{H}, we have

$$\text{Ext}_{\mathcal{H}} C^\infty(S^1) \simeq \text{Ext} C(S^1) \simeq \mathbb{Z}.$$

Fix $\mathcal{H} \subset L^p$ for some $p \geq 1$. It follows from [C] that there is a natural group homomorphism

$$ch_m : \text{Ext}_{\mathcal{H}}(A^\infty) \to HC^{2m+1}(A^\infty), \quad m \geq p,$$

such that $ch_{m+1} = S \circ ch_m$. Here HC^* is the cyclic homology.

5. Let D be the unit disc. Then $\text{Ext}(C(D)) = 0$. However, $\text{Ext}_{L^1} C^\infty(D) \otimes \mathbb{C}$ contains as a direct summand the group $HC^1(C^\infty(D))$, which is the space of all the closed de Rham currents on D of dimension 1.

Remarks. Since there is no Hausdorff topology on L^p/\mathcal{H}, we abandon the conventional formulation of Ext; so a lifting problem does not arise.

An attractive perspective of the smooth extension theory is that $\text{Ext}_\tau(A^\infty)$ is a differential invariant for appropriate \mathcal{H} and A^∞. In [Km] it is shown that even in the B-D-F group the class of a smooth extension may depend on the smooth structure.
Details will appear elsewhere (see [W2, W3, W5]). We plan to investigate the topological aspect of the theory, along with the even degree functors in a future work.

Acknowledgment

We would like to thank J. Anderson, L. Brown, A. Connes, R. Douglas, J. Horvath, J. Kaminker, and especially J. Rosenberg, and D. Voiculescu, for stimulating conversations concerning various aspects of this work.

References

Department of Mathematics, University of Maryland, College Park, Maryland 20742

E-mail address: xnw@karen.umd.edu