Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Prevalence: a translation-invariant ``almost every'' on infinite-dimensional spaces


Authors: Brian R. Hunt, Tim Sauer and James A. Yorke
Journal: Bull. Amer. Math. Soc. 27 (1992), 217-238
MSC (2000): Primary 28C20; Secondary 46G12
DOI: https://doi.org/10.1090/S0273-0979-1992-00328-2
MathSciNet review: 1161274
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present a measure-theoretic condition for a property to hold "almost everywhere" on an infinite-dimensional vector space, with particular emphasis on function spaces such as $ {C^k}$ and $ {L^p}$. Like the concept of "Lebesgue almost every" on finite-dimensional spaces, our notion of "prevalence" is translation invariant. Instead of using a specific measure on the entire space, we define prevalence in terms of the class of all probability measures with compact support. Prevalence is a more appropriate condition than the topological concepts of "open and dense" or "generic" when one desires a probabilistic result on the likelihood of a given property on a function space. We give several examples of properties which hold "almost everywhere" in the sense of prevalence. For instance, we prove that almost every $ {C^1}$ map on $ {\mathbb{R}^n}$ has the property that all of its periodic orbits are hyperbolic.


References [Enhancements On Off] (What's this?)

  • [1] V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, Springer-Verlag, New York, 1983. MR 695786 (84d:58023)
  • [2] P. Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. (N.S.) 11 (1984), 85-141. MR 741725 (85h:58001)
  • [3] H. Cremer, Zum Zentrumproblem, Math. Ann. 98 (1928), 151-163. MR 1512397
  • [4] N. Dunford and J. T. Schwartz, Linear operators, Part 1, Interscience, New York, 1958.
  • [5] I. V. Girsanov and B. S. Mityagin, Quasi-invariant measures and linear topological spaces, Nauchn. Dokl. Vys. Skol. 2 (1959), 5-10. (Russian)
  • [6] J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer-Verlag, New York, 1983. MR 709768 (85f:58002)
  • [7] V. Guillemin and A. Pollack, Differential topology, Prentice-Hall, Englewood Cliffs, NJ, 1974. MR 0348781 (50:1276)
  • [8] M. W. Hirsch, Differentiable topology, Springer-Verlag, New York, 1976. MR 0448362 (56:6669)
  • [9] B. R. Hunt, The prevalence of continuous nowhere differentiable functions, preprint. MR 1260170 (95d:26009)
  • [10] W. Hurewicz and H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, NJ, 1948. MR 0006493 (3:312b)
  • [11] J. A. Kennedy and J. A. Yorke, Pseudocircles in dynamical systems, preprint. MR 1187029 (94g:58166)
  • [12] K. Kuratowski, Topology, Vol. 1, Academic Press, New York, 1966. MR 0217751 (36:840)
  • [13] M. Yu. Lyubich, On the typical behavior of the trajectories of the exponential, Russian Math. Surveys 41 (1986), no. 2, 207-208. MR 842176 (87g:58062)
  • [14] -Measurable dynamics of the exponential, Siberian Math. J. 28 (1987), 780-793. MR 924986 (89d:58071)
  • [15] J. E. Marsden and M. McCracken, The Höpf bifurcation and its applications, Springer-Verlag, New York, 1976. MR 0494309 (58:13209)
  • [16] M. Misiurewicz, On iterates of $ {e^z}$, Ergodic Theory Dynamical Systems 1 (1981), 103-106. MR 627790 (82i:58058)
  • [17] J. Mycielski, Unsolved problems on the prevalence of ergodicity, instability and algebraic independence, The Ulam Quarterly (to appear).
  • [18] S. E. Newhouse, On the abundance of wild hyperbolic sets, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 101-151. MR 556584 (82e:58067)
  • [19] H. E. Nusse and L. Tedeschini-Lalli, Wild hyperbolic sets, yet no chance for the coexistence of infinitely many KLUS-simple Newhouse attracting sets, Comm. Math. Phys. 144 (1992), 429-442. MR 1158755 (93e:58146)
  • [20] J. C. Oxtoby, Measure and category, Springer-Verlag, New York, 1971. MR 584443 (81j:28003)
  • [21] J. C. Oxtoby and S. M. Ulam, On the existence of a measure invariant under a transformation, Ann. of Math. (2) 40 (1939), 560-566. MR 0000097 (1:18e)
  • [22] C. Pugh and M. Shub, Ergodicity of Anosov actions, Invent. Math. 15 (1972), 1-23. MR 0295390 (45:4456)
  • [23] F. Quinn and A. Sard, Hausdorff conullity of critical images of Fredholm maps, Amer. J. Math. 94 (1972), 1101-1110. MR 0322899 (48:1260)
  • [24] M. Rees, The exponential map is not recurrent, Math. Z. 191 (1986), 593-598. MR 832817 (87g:58063)
  • [25] C. Robinson, Bifurcations to infinitely many sinks, Comm. Math. Phys. 90 (1983), 433-459. MR 719300 (84k:58169)
  • [26] A. Sard, The measure of the critical points of differentiable maps, Bull. Amer. Math. Soc. 48 (1942), 883-890. MR 0007523 (4:153c)
  • [27] T. Sauer and J. A. Yorke, Statistically self-similar sets, preprint.
  • [28] T. Sauer, J. A. Yorke, and M. Casdagli, Embedology, J. Statist. Phys. 65 (1991), 579-616. MR 1137425 (93c:58147)
  • [29] H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966. MR 0193469 (33:1689)
  • [30] C. L. Siegel, Iteration of analytic functions, Ann. of Math. (2) 43 (1942), 607-612. MR 0007044 (4:76c)
  • [31] V. N. Sudakov, Linear sets with quasi-invariant measure, Dokl. Akad. Nauk SSSR 127 (1959), 524-525. (Russian) MR 0107689 (21:6412)
  • [32] -On quasi-invariant measures in linear spaces, Vestnik Leningrad. Univ. 15 (1960), no. 19, 5-8. (Russian, English summary) MR 0152627 (27:2602)
  • [33] L. Tedeschini-Lalli and J. A. Yorke, How often do simple dynamical processes have infinitely many coexisting sinks? Comm. Math. Phys. 106 (1986), 635-657. MR 860314 (88h:58061)
  • [34] H. Whitney, Differentiable manifolds, Ann. of Math. (2) 37 (1936), 645-680. MR 1503303
  • [35] Y. Yamasaki, Measures on infinite dimensional spaces, World Scientific, Singapore, 1985. MR 999137 (90b:28015)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 28C20, 46G12

Retrieve articles in all journals with MSC (2000): 28C20, 46G12


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1992-00328-2
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society