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LINKLESS EMBEDDINGS OF GRAPHS IN 3-SPACE

NEIL ROBERTSON, P. D. SEYMOUR, AND ROBIN THOMAS

Abstract. We announce results about flat (linkless) embeddings of graphs in

3-space. A piecewise-linear embedding of a graph in 3-space is called flat if

every circuit of the graph bounds a disk disjoint from the rest of the graph. We

have shown:

(i) An embedding is flat if and only if the fundamental group of the com-

plement in 3-space of the embedding of every subgraph is free.

(ii) If two flat embeddings of the same graph are not ambient isotopic, then

they differ on a subdivision of K¡ or K-¡ 3 .

(iii) Any flat embedding of a graph can be transformed to any other flat

embedding of the same graph by "3-switches", an analog of 2-switches from

the theory of planar embeddings. In particular, any two flat embeddings of a

4-connected graph are either ambient isotopic, or one is ambient isotopic to a

mirror image of the other.

(iv) A graph has a flat embedding if and only if it has no minor isomorphic

to one of seven specified graphs. These are the graphs that can be obtained

from K6 by means of Y A- and AK-exchanges.

1. Introduction

All spatial embeddings are assumed to be piecewise linear. If C, C are

disjoint simple closed curves in S3, then their linking number, lk(C, C), is

the number of times (mod 2) that C crosses over C in a regular projection

of CuC. In this paper graphs are finite, undirected, and may have loops and

multiple edges. Every graph is regarded as a topological space in the obvious

way. We say that an embedding of a graph G in S3 is linkless if every two

disjoint circuits of G have zero linking number. The following is a result of

Sachs [13, 14] and Conway and Gordon [3].

(1.1) The graph K(, (the complete graph on six vertices) has no linkless embed-
ding.

Proof. Let (f> be an embedding of K6 into S3. By studying the effect of
a crossing change in a regular projection, it is easy to see that the mod 2

sum ^2lk((j)(Cx), 4>(C2)), where the sum is taken over all unordered pairs of

disjoint circuits Cx, C2 of K6, is an invariant independent of the embedding.

By checking an arbitrary embedding we can establish that this invariant equals
1.    D

Let G be a graph and let v be a vertex of G of valency 3 with distinct

neighbors.   Let H be obtained from G by deleting v  and adding an edge
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between every pair of neighbors of v. We say that H is obtained from G

by a YA-exchange and that G is obtained from H by a AY-exchange. The
Petersen family is the set of all graphs that can be obtained from A"6 by means

of Y A- and AF-exchanges. There are exactly seven such graphs, one of which

is the Petersen graph. Pictures of these graphs can be found in [13-15]. Sachs

[13, 14] has in fact shown that no member of the Petersen family has a linkless

embedding [the argument is similar to the proof of ( 1.1 )] and raised the problem

of characterizing linklessly embeddable graphs. A graph is a minor of another
if the first can be obtained from a subgraph of the second by contracting edges.

It is easy to see that the property of having a linkless embedding is preserved

under taking minors, and that led Sachs to conjecture that a graph is linklessly

embeddable if and only if it has no minor in the Petersen family. We have

shown that this is true. Moreover, let us say that an embedding </> of a graph

G in S3 is flat if for every circuit C of G there exists an open disk in S3

disjoint from </>(G) whose boundary is <p(C). Clearly every flat embedding is

linkless, but the converse need not hold. However, Böhme [1] and Saran [15]

conjectured that a graph has a linkless embedding if and only if it has a flat one.

This is also true, for we have shown the following.

(1.2) For a graph G, the following are equivalent:

(i)   G has a flat embedding,
(ii)   G has a linkless embedding,

(iii)   G has no minor in the Petersen family.

There have been a number of other attempts [8, 15, 2] at proving (iii) =>■ (i)

and (iii) => (ii). However, none of them is correct.

For the proof of (1.2) we need the following two theorems, which may be of
independent interest.

(1.3) Let 4> be an embedding of a graph G in S3. Then 0 is flat if and only
if for every subgraph G' of G, the fundamental group of S3 - 4>(G') is free.

Let </>i, fa be two embeddings of a graph G in S3. We say that 4>x, <f>2 are
ambient isotopic if there exists an orientation preserving homeomorphism h of

S3 onto S3 such that 4>x = h(f>2- (We remark that by a result of Fisher [4] h
can be realized by an ambient isotopy.) If <f> is an embedding of a graph G in

S3 we denote by -0 the embedding of G obtained by composing <j> with the
antipodal map.

(1.4) Let G be a 4-connected graph and let 4>x, 4>2 be two flat embeddings of
G. Then (j>x is ambient isotopic to either (¡>2 or —<p2-

2. The fundamental group

A basic tool for working with flat embeddings is the following lemma of
Böhme [1] (see also [15]).

(2.1)   Let 4> be a flat embedding of a graph G into S3, and let CX,C2, ... ,Cn
be a family of circuits of G such that for every i / j, the intersection of C, and
Cj  is either connected or null.   Then there exist pairwise disjoint open disks

Dx, D2, ... , D„, disjoint from <j>(G) and such that <f>(C,) is the boundary of
Dt for 1 = 1,2,...,«.
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We illustrate the use of (2.1) with the following, which is a special case of a

theorem of Wu [18]. An embedding <j> of a graph G in S3 is spherical if there

exists a surface ÏÇ53 homeomorphic to S2 such that <f>(G) Ç £. Clearly if

4> is spherical then G is planar.

(2.2) Let <t> be an embedding of a planar graph G in S3. Then </> is flat if
and only if it is spherical.

Proof. Clearly if </3 is spherical then it is flat. We prove the converse only

for the case when G is 3-connected. Let Cx, C2, . ■. , Cn be the collection

of face-boundaries in some planar embedding of G. These circuits satisfy

the hypothesis of (2.1). Let D\, D2, ... , Dn be the disks as in (2.1); then
(j>(G) U Dx U D2 U • • • U D„ is the desired sphere.   G

The following is a result of Scharlemann and Thompson [16].

(2.3) Let <j) be an embedding of a graph G in S3. Then <p is spherical if and
only if

(i)   G is planar, and

(ii) for every subgraph G' of G, the fundamental group of S3 - <f>(G') is

free.

We see that by (2.2), (1.3) is a generalization of (2.3). In fact, we prove (1.3)

by reducing it to planar graphs and then applying (2.3). Let us prove the "only

if" part of (1.3). Let G' be a subgraph of G such that nx(S3 - <f>(G')) is not
free. Choose a maximal forest F of G' and let G" be obtained from G' by

contracting all edges of F, and let <f>" be the induced embedding of G" . Then

nx(S3 - <p"(G")) = nx(S3 - 4>(G')) is not free, but G" is planar, and so <f>" is
not flat by (2.2) and (2.3). Hence <f> is not flat, as desired.

Let G be a graph, and let e be an edge of G. We denote by G\e(G/e)
the graph obtained from G by deleting (contracting) e. If (p is an embedding

of G in S3, then it induces embeddings of G\e and (up to ambient isotopy)

of G/e in the obvious way. We denote these embeddings by <f>\e and (f)/e,
respectively.

(2.4) Let (j) be an embedding of a graph G into S3, and let e be a nonloop

edge of G. If both <j>\e and (f>/e are flat, then 4> is flat.

Proof. Suppose that <j> is not flat. By (1.3) there exists a subgraph G' of G

suchthat nx(S3-<f>(G')) is not free. If e 0 E(G') then (p\e is not flat by (1.3).
If e e E(G') then <f>/e is not flat by (1.3), because nx(S3 - (cf>/e)(G'Ie)) =
nx(S3 - <p(G')) is not free.   □

We say that a graph G is a coforest if every edge of G is a loop. The
following follows immediately from (2.4).

(2.5) Let (j> be an embedding of a graph G in S3. Then <f> is flat if and only
if the induced embedding of every coforest minor of G is flat.

3. Uniqueness

A graph H is a subdivision of a graph G if H can be obtained from G

by replacing edges by pairwise internally-disjoint paths. We recall that Kura-

towski's theorem [6] states that a graph is planar if and only if it contains no
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subgraph isomorphic to a subdivision of A"5 or A3 ; 3. It follows from a theo-

rem of Mason [7] and (2.2) that any two flat embeddings of a planar graph are

ambient isotopic. On the other hand we have the following.

(3.1) The graphs A5 and K33 have exactly two nonambient isotopic flat em-
beddings.

Sketch of proof. Let G be A"33 or A"5, let e be an edge of G, and let H
be G\e. Notice that H is planar. From (2.1) it follows that if <f> is a flat
embedding of G, then there is an embedded 2-sphere IÇ53 with </>(G) nX =
4>(H). If <7>i and <t52 are flat embeddings of G, we may assume (by replacing

(7>2 by an ambient isotopic embedding) that this 2-sphere X is the same for both

<t>x and 02. Now <f>x is ambient isotopic to §2 if and only if <f>x(e) and <f>2(e)

belong to the same component of S3 - X.   D

As a curiosity we deduce that a graph has a unique flat embedding if and
only if it is planar.

We need the following three lemmas. We denote by f\X the restriction of

a mapping / to a set X.

(3.2) Let <}>x, <f>2 be two flat embeddings of a graph G that are not ambient

isotopic. Then there exists a subgraph H of G isomorphic to a subdivision of

A"5 or K33 for which <f>\\H and 4>2\H are not ambient isotopic.

We denote the vertex-set and edge-set of a graph G by V(G) and E(G)

respectively. Let G be a graph and let Hx, H2 be subgraphs of G isomorphic

to subdivisions of K5 or A3 > 3. We say that Hx and H2 are 1 -adjacent if there

exist 1' e {1, 2} and a path P in G such that P has only its endvertices in

common with //, and such that H3 _,• is a subgraph of the graph obtained from

Hi by adding P. We say that Hx and H2 are 2-adjacent if there are seven

vertices U\, u2, ..., «7 of G and thirteen paths Ly of G (1 < / < 4 and
5 < j < 7, or / = 3 and j = 4), such that

(i) each path L,-7- has ends w,, «,,

(ii) the paths L¡j are mutually vertex-disjoint except for their ends,

(iii) Hx is the union of £y for « = 2,3,4 and 7 = 5,6,7, and
(iv) //2 is the union of L¡j for ¿=1,3,4 and j = 5,6,7.

(Notice that if //1 and #2 are 2-adjacent then they are both isomorphic to

subdivisions of A3 3 and that L34 is used in neither Hx nor H2.) Wedenote

by Jt(G) the simple graph with vertex-set all subgraphs of G isomorphic to

subdivisions of A"5 or A"3;3 in which two distinct vertices are adjacent if they

are either 1-adjacent or 2-adjacent. The following is easy to see, using (3.1).

(3.3) Let <j)X, fa be two flat embeddings of a graph G, and let H, H' be two
adjacent vertices of 3t'(G). If <f>x\H is ambient isotopic to <f>2\H, then <t>x\H' is
ambient isotopic to <f>2\H'.

The third lemma is purely graph-theoretic.

(3.4) If G isa 4-connectedgraph, then 3f(G) is connected.

We prove (3.4) in [10] by proving a stronger result, a necessary and sufficient

condition for H, H' e V(Jt(G)) to belong to the same component of 3?(G)

in an arbitrary graph G. The advantage of this approach is that it permits an

inductive proof using the techniques of deleting and contracting edges.
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Proof of (1.4). If G is planar then tf>x is ambient isotopic to <f>2 by Mason's
theorem. Otherwise there exists, by Kuratowski's theorem, a subgraph H of G

isomorphic to a subdivision of A5 or K33. By replacing (p2 by -<j>2 we may

assume by (3.1) that (¡>X\H is ambient isotopic to </>2\H. From (3.3) and (3.4)

we deduce that 4>X\H' is ambient isotopic to (j>2\H' for every H' e V(JP(G)).

By (3.2) (/>i and <f>2 are ambient isotopic, as desired.   □

We now state a generalization of (1.4). Let </> be a flat embedding of a graph

G, and let X C S3 be a surface homeomorphic to S2 meeting 4>(G) in a set A

containing at most three points. In one of the open balls into which X divides

S3, say B, choose an open disk D with boundary a simple closed curve dD

such that ACdDC'L. Let <j>' be an embedding obtained from <j> by taking a
reflection of 4> through D in B and leaving </> unchanged in X - B. We say

that 4>' is obtained from <f> by a 3-svw'ic/i. The following analog of a theorem

of Whitney [17] generalizes (1.4).

(3.5) Let 4>x,<t>2 be two flat embeddings of a graph G in S3. Then <t>2 can
be obtained from <j)X by a series of 3-switches.

4. Main theorem

The difficult part of (1.2) is to show that (iii) implies (i). Let us just very

briefly sketch the main idea of the proof. Suppose that G is a minor-minimal

graph with no flat embedding. We first show that a YA-exchange preserves the

property of having a flat embedding; thus we may assume that G has no tri-

angles (and indeed has some further properties that we shall not specify here).

It can be shown that G satisfies a certain weaker form of 5-connectivity. Sup-

pose that there are two edges e, f of G so that G\e/f and G/e/f are "Ku-
ratowski 4-connected". (Kuratowski 4-connectivity is a slight weakening of 4-

connectivity for which (1.4) still remains true.) Since G is minor-minimal with

no flat embedding, there are flat embeddings 4>x, <f>2, (f>3 of G\e, G/e, G/f,
respectively. Since G\e/f and G/e/f are both Kuratowski 4-connected, we

can assume (by replacing (¡>x or (f>2 or both by its mirror image) that 4>x/ f is

ambient isotopic to 4>3\e and that (/)2/f is ambient isotopic to <p3/e . Now it

can be argued (the details are quite complicated, see [12]) that the uncontrac-

tion of / in <f>x/f~ (¡)3\e is the same as in <j>2/f ~<$>3/e. Let <f> be obtained

from <fr3 by doing this uncontraction; then <j>\e is ambient isotopic to <fix and
<f)/e is ambient isotopic to <j>2. Since both these embeddings are flat, 4> is flat

by (2.4), a contradiction. Thus no two such edges e, f exist. But now a purely

graph-theoretic argument [11] (using the nonexistence of such edges e, f, the

high connectivity of G, and that the graph obtained from G by deleting v is

nonplanar for every vertex v of G) implies G has a minor in the Petersen

family.
Finally we would like to mention some algorithmic aspects of flat embeddings.

In [16] Scharlemann and Thompson describe an algorithm to test if a given

embedding is spherical. Using their algorithm, (2.2), and (2.5), we can test if

a given embedding is flat, by testing the flatness of all coforest minors. At the

moment there is no known polynomial-time algorithm to test if an embedding of

a given coforest is flat, because it includes testing if a knot is trivial. On the other

hand, we can test in time 0(\V(G)\3) if a given graph G has a flat embedding.
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This is done by testing the absence of minors isomorphic to members of the

Petersen family, using the algorithm [9] of the first two authors.
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