Linkless embeddings of graphs in -space

Authors:
Neil Robertson, P. D. Seymour and Robin Thomas

Journal:
Bull. Amer. Math. Soc. **28** (1993), 84-89

MSC:
Primary 57M15; Secondary 05C10

DOI:
https://doi.org/10.1090/S0273-0979-1993-00335-5

MathSciNet review:
1164063

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We announce results about flat (linkless) embeddings of graphs in 3-space. A piecewise-linear embedding of a graph in 3-space is called *flat* if every circuit of the graph bounds a disk disjoint from the rest of the graph. We have shown:

(i) An embedding is flat if and only if the fundamental group of the complement in 3-space of the embedding of every subgraph is free.

(ii) If two flat embeddings of the same graph are not ambient isotopic, then they differ on a subdivision of or .

(iii) Any flat embedding of a graph can be transformed to any other flat embedding of the same graph by "3-switches", an analog of 2-switches from the theory of planar embeddings. In particular, any two flat embeddings of a 4-connected graph are either ambient isotopic, or one is ambient isotopic to a mirror image of the other.

(iv) A graph has a flat embedding if and only if it has no minor isomorphic to one of seven specified graphs. These are the graphs that can be obtained from by means of - and -exchanges.

**[1]**T. Böhme,*On spatial representations of graphs*, Contemporary Methods in Graph Theory (R. Bodendieck, ed.), Mannheim, Wien, Zurich, 1990, pp. 151-167. MR**1126225 (93a:05053)****[2]**-,*Lecture at the AMS Summer Research Conference on Graph Minors*, Seattle, WA, June 1991.**[3]**J. H. Conway and C. McA. Gordon,*Knots and links in spatial graphs*, J. Graph Theory**7**(1983), 445-453. MR**722061 (85d:57002)****[4]**G. M. Fisher,*On the group of all homeomorphisms of a manifold*, Trans. Amer. Math. Soc.**97**(1960), 193-212. MR**0117712 (22:8487)****[5]**D. W. Hall,*A note on primitive skew curves*, Bull. Amer. Math. Soc.**49**(1943), 935-937. MR**0009442 (5:151b)****[6]**C. Kuratowski,*Sur le problème des courbes gauches en topologie*, Fund. Math.**15**(1930), 271-283.**[7]**W. K. Mason,*Homeomorphic continuous curves in*2-*space are isotopic in*3-*space*, Trans. Amer. Math. Soc.**142**(1969), 269-290. MR**0246276 (39:7580)****[8]**R. Motwani, A. Raghunathan, and H. Saran,*Constructive results from graph minors: Linkless embeddings*, Proc. 29th Symposium on the Foundations of Computer Science, Yorktown Heights, 1988.**[9]**N. Robertson and P. D. Seymour,*Graph minors*. XIII.*The disjoint paths problem*, submitted.**[10]**N. Robertson, P. D. Seymour, and R. Thomas,*Kuratowski chains*, submitted.**[11]**-,*Petersen family minors*, submitted.**[12]**-,*Sachs' linkless embedding conjecture*, manuscript.**[13]**H. Sachs,*On spatial representation of finite graphs*(Proceedings of a conference held in Lagów, February 10-13, 1981, Poland), Lecture Notes in Math., vol. 1018, Springer-Verlag, Berlin, Heidelberg, New York, and Tokyo, 1983. MR**730653 (85b:05077)****[14]**-,*On spatial representations of finite graphs, finite and infinite sets*, (A. Hajnal, L. Lovász, and V. T. Sós, eds), Colloq. Math. Soc. János Bolyai, vol. 37, North-Holland, Budapest, 1984, pp. 649-662. MR**818267 (87c:05055)****[15]**H. Saran,*Constructive results in graph minors*:*Linkless embeddings*, Ph.D. thesis, University of California at Berkeley, 1989.**[16]**M. Scharlemann and A. Thompson,*Detecting unknotted graphs in*3-*space*, J. Differential Geom.**34**(1991), 539-560. MR**1131443 (93a:57012)****[17]**H. Whitney, 2-*isomorphic graphs*, Amer. J. Math.**55**(1933), 245-254. MR**1506961****[18]**Y.-Q. Wu,*On planarity of graphs in*3-*manifolds*, Comment. Math. Helv. (to appear). MR**1185812 (93m:57002)**

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC:
57M15,
05C10

Retrieve articles in all journals with MSC: 57M15, 05C10

Additional Information

DOI:
https://doi.org/10.1090/S0273-0979-1993-00335-5

Article copyright:
© Copyright 1993
American Mathematical Society