A new result for the porous medium equation derived from the Ricci flow

Author:
Lang-Fang Wu

Journal:
Bull. Amer. Math. Soc. **28** (1993), 90-94

MSC:
Primary 58G30; Secondary 35Q51, 53C21, 58G11, 76S05

DOI:
https://doi.org/10.1090/S0273-0979-1993-00336-7

MathSciNet review:
1164949

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given , with a "good" complete metric, we show that the unique solution of the Ricci flow approaches a soliton at time infinity. Solitons are solutions of the Ricci flow, which move only by diffeomorphism. The Ricci flow on is the limiting case of the porous medium equation when *m* is zero. The results in the Ricci flow may therefore be interpreted as sufficient conditions on the initial data, which guarantee that the corresponding unique solution for the porous medium equation on the entire plane asymptotically behaves like a "soliton-solution".

**[A]**D. G. Aronson,*The porous medium equations*, Some Problems in Nonlinear Diffusion (A. Fasano and M. Primicerio, eds.), Lecture Notes in Maths., vol. 1224, Springer, New York, 1986.**[CW]**B. Chow and L. Wu,*The Ricci flow on compact*2-*orbifolds with curvature negative somewhere*, Comm. Pure and Appl. Math., vol. XLIV, Wiley, New York, 1991, pp. 275-286. MR**1090433 (92g:53035)****[ERV]**J. R. Esteban, A. Rodriguez, and J. L. Vazquez,*A nonlinear heat equation with singular diffusivity*, Arch. Rational Mech. Analysis**103**(1988), 985-1039. MR**944437 (89h:35167)****[Ha1]**R. Hamilton,*The Ricci flow on surfaces*, Contemp. Math., vol. 71, Amer. Math. Soc., Providence, RI, 1988, pp. 237-262. MR**954419 (89i:53029)****[Ha2]**-,*Notes on Harnack's inequality*, preprint.**[H1]**M. A. Herrero,*A limiting case in nonlinear diffusion*, Nonlinear Anal.**13**(1989), 611-628. MR**998508 (90h:35120)****[H2]**-,*Singular diffusion on the line*(to appear).**[Shi]**W. X. Shi,*Complete noncompact Kähler manifolds with positive holomorphic bisectional curvature*, Bull. Amer. Math. Soc. (N.S.)**23**(1990), 437-440. MR**1044171 (91e:53069)****[V]**J. L. Valazquez,*Two nonlinear diffusion equations with finite speed of propagation*, Proceedings of the conference in honor of Jack Hale on the occasion of his 60th birthday, preprint.**[W1]**L. Wu,*The Ricci flow on*2-*orbifolds with positive curvature*, J. Differential Geom**33**(1991), 575-596. MR**1094470 (92d:53037)****[W2]**-,*The Ricci flow on complete*(*The limiting case of the porous medium equations as*), submitted.

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC:
58G30,
35Q51,
53C21,
58G11,
76S05

Retrieve articles in all journals with MSC: 58G30, 35Q51, 53C21, 58G11, 76S05

Additional Information

DOI:
https://doi.org/10.1090/S0273-0979-1993-00336-7

Article copyright:
© Copyright 1993
American Mathematical Society