Relative -cycles and elliptic boundary conditions

Author:
Guihua Gong

Journal:
Bull. Amer. Math. Soc. **28** (1993), 104-108

MSC:
Primary 58G12; Secondary 19K33, 46L99

DOI:
https://doi.org/10.1090/S0273-0979-1993-00349-5

MathSciNet review:
1168515

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we discuss the following conjecture raised by Baum-Douglas: For any first-order elliptic differential operator *D* on smooth manifold *M* with boundary , *D* possesses an elliptic boundary condition if and only if in , where [*D*] is the relative *K*-cycle in corresponding to *D*. We prove the "if" part of this conjecture for and the "only if" part of the conjecture for arbitrary dimension.

**[1]**M. Atiyah, V. Patodi, and I. Singer,*Spectral asymmetry and riemannian geometry*. I, II, III, Math. Proc. Cambridge Philos. Soc.**77**(1975), 43-69;**78**(1975), 405-632;**79**(1976), 71-99. MR**0397797 (53:1655a)****[2]**P. Baum and R. Douglas,*Index theory, bordism, and K-homology*, Operator Algebras and*K*-Theory (R. G. Douglas and C. Schochet, eds.), Contemp. Math., vol. 10, Amer. Math. Soc., Providence, RI, 1982, pp. 1-31. MR**658506 (83f:58070)****[3]**-,*Relative K-homology and*-*algebra*, manuscript.**[4]**P. Baum, R. Douglas, and M. Taylor,*Cycles and relative cycles in analytic K-homology*, J. Differential Geom.**30**(1989), 761-804. MR**1021372 (91b:58244)****[5]**L. Boutet de Monvel,*Boundary problems for pseudodifferential operators*, Acta Math.**126**(1971), 11-51. MR**0407904 (53:11674)****[6]**L. Hömander,*The analysis of linear partial differential operators*. III, Springer, New York, 1985. MR**781536 (87d:35002a)**

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC:
58G12,
19K33,
46L99

Retrieve articles in all journals with MSC: 58G12, 19K33, 46L99

Additional Information

DOI:
https://doi.org/10.1090/S0273-0979-1993-00349-5

Article copyright:
© Copyright 1993
American Mathematical Society