Best uniform rational approximation of on

Author:
Herbert Stahl

Journal:
Bull. Amer. Math. Soc. **28** (1993), 116-122

MSC:
Primary 41A20

MathSciNet review:
1168517

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A strong error estimate for the uniform rational approximation of on [0, 1] is given, and its proof is sketched. Let denote the minimal approximation error in the uniform norm. Then it is shown that

**[Be1]**S. Bernstein,*Sur meilleure approximation de**par des polynômes de degrés donnés*, Acta Math.**37**(1913), 1-57.**[Be2]**-,*About the best approximation of**by means of polynomials of very high degree*, Bull. Acad. Sci. USSR Cl. Sci. Math. Natur. 2 (1938), 169-190; also Collected Works, vol. II, 262-272. (Russian)**[Bu1]**A. P. Bulanov,*Asymptotics for least deviations of 𝑥 from rational functions*, Mat. Sb. (N.S.)**76 (118)**(1968), 288–303 (Russian). MR**0228889****[Bu2]**A. P. Bulanov,*The approximation of 𝑥^{1/3} by rational functions*, Vesci Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk**1968**(1968), no. 2, 47–56 (Russian). MR**0231094****[FrSz]**G. Freud and J. Szabados,*Rational approximation to 𝑥^{𝛼}*, Acta Math. Acad. Sci. Hungar**18**(1967), 393–399. MR**0221169****[Ga]**T. Ganelius,*Rational approximation to 𝑥^{𝛼} on [0,1]*, Anal. Math.**5**(1979), no. 1, 19–33 (English, with Russian summary). MR**535494**, 10.1007/BF02079347**[GoLa]**A. H. Gonchar and G. Lopez,*On Markov's theorem for multipoint Padeé approximants*, Mat. Sb.**105**(1978); English transl. in Math. USSR Sb.**34**(1978), 449-459.**[Go1]**A. A. Gončar,*Rapidity of rational approximation of continuous functions with characteristic singularities*, Mat. Sb. (N.S.)**73 (115)**(1967), 630–638 (Russian). MR**0214982****[Go2]**-,*Rational approximation of the function*, Constructive Theory of Functions (Proc. Internat. Conf., Varna 1970), Izdat. Bolgar. Akad. Nauk, Sofia, 1972, pp. 51-53. (Russian)**[Go3]**A. A. Gončar,*The rate of rational approximation and the property of univalence of an analytic function in the neighborhood of an isolated singular point*, Mat. Sb. (N.S.)**94(136)**(1974), 265–282, 336 (Russian). MR**0352477****[Me]**Günter Meinardus,*Approximation of functions: Theory and numerical methods*, Expanded translation of the German edition. Translated by Larry L. Schumaker. Springer Tracts in Natural Philosophy, Vol. 13, Springer-Verlag New York, Inc., New York, 1967. MR**0217482****[Ne]**D. J. Newman,*Rational approximation to \vert𝑥\vert*, Michigan Math. J.**11**(1964), 11–14. MR**0171113****[Ri]**Theodore J. Rivlin,*An introduction to the approximation of functions*, Dover Publications, Inc., New York, 1981. Corrected reprint of the 1969 original; Dover Books on Advanced Mathematics. MR**634509****[St]**G. Shtal′,*Best uniform rational approximations of \vert𝑥\vert on [-1,1]*, Mat. Sb.**183**(1992), no. 8, 85–118 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math.**76**(1993), no. 2, 461–487. MR**1187250**, 10.1070/SM1993v076n02ABEH003422**[StTo]**Herbert Stahl and Vilmos Totik,*General orthogonal polynomials*, Encyclopedia of Mathematics and its Applications, vol. 43, Cambridge University Press, Cambridge, 1992. MR**1163828****[Tz]**Jean Tzimbalario,*Rational approximation to 𝑥^{𝛼}*, J. Approximation Theory**16**(1976), no. 2, 187–193. MR**0402344****[VC1]**Richard S. Varga and Amos J. Carpenter,*On the Bernstein conjecture in approximation theory*, Constr. Approx.**1**(1985), no. 4, 333–348. MR**891763**, 10.1007/BF01890040**[VC2]**-,*Some numerical results on best uniform rational approximation of**on*[0, 1], Numer. Algorithms (to appear).**[VCR]**R. S. Varga, A. Ruttan, and A. Dzh. Karpenter,*Numerical results on the best uniform rational approximations of the function \vert𝑥\vert on the interval [-1,1]*, Mat. Sb.**182**(1991), no. 11, 1523–1541 (Russian); English transl., Math. USSR-Sb.**74**(1993), no. 2, 271–290. MR**1137861****[Vj1]**N. S. Vjačeslavov,*The approximation of the function 𝑥 by rational functions*, Mat. Zametki**16**(1974), 163–171 (Russian). MR**0355426****[Vj2]**N. S. Vjačeslavov,*The uniform approximation of 𝑥 by rational functions*, Dokl. Akad. Nauk SSSR**220**(1975), 512–515 (Russian). MR**0380214****[Vj3]**-,*On the approximation of**by rational functions*, Izv. Akad. Nauk USSR**44**(1980); English transl. in Math. USSR Izv.**16**(1981), 83-101.

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC:
41A20

Retrieve articles in all journals with MSC: 41A20

Additional Information

DOI:
https://doi.org/10.1090/S0273-0979-1993-00351-3

Article copyright:
© Copyright 1993
American Mathematical Society