Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Ugo Bruzzo Claudio Bartocci, and Daniel Hern\'andez-Ruip\'erez
Title: The geometry of supermanifolds
Additional book information: Kluwer Academic Publ., Dordrecht 1991, 242 pp., US$77.00. ISBN 0-7923-1440-9.

References [Enhancements On Off] (What's this?)

  • [1] M. Batchelor, Two approaches to supermanifolds, Trans. Amer. Math. Soc. 258 (1980), 257-270. MR 554332 (81f:58001)
  • [2] F. A. Berezin, The method of second quantization, Academic Press, New York, 1966. MR 0208930 (34:8738)
  • [3] -, Introduction to superanalysis, Reidel, Dordrecht, 1987.
  • [4] F. A. Berezin and G. I. Kac, Lie groups with commuting and anticommuting parameters, Math. USSR Sb. 11 (1970), 311. MR 0265520 (42:429)
  • [5] F. A. Berezin and D. A. Leites, Supermanifolds, Soviet Math. Dokl. 6 (1976), 1218-1222.
  • [6] S. Deser and B. Zumino, Consistent supergravity, Phys. Lett. B 62 (1976), 335. MR 0411531 (53:15264)
  • [7] B. S. DeWitt, Supermanifolds, Cambridge Univ. Press, London and New York, 1984. MR 778559 (87b:58007)
  • [8] S. Ferrera, D. Freedman, and P. van Nieuwenhuizen, Progress towards a theory of supergravity, Phys. Rev. D (3) 13 (1976), 3214. MR 0462449 (57:2422)
  • [9] A. Inoue and Y. Maeda, Foundations of calculus on super euclidean space $ {R^{m\vert n}}$ based on a Fréchet-Grassmann algebra, Kodai Math. J. 14 (1991), 72-112. MR 1099318 (93c:58034)
  • [10] B. Kostant, Graded manifolds, graded Lie theory and prequantization, Differential Geometric Methods in Mathematical Physics, Lecture Notes in Math., vol. 570, Springer-Verlag, New York, 1977. MR 0580292 (58:28326)
  • [11] D. A. Leites, Introduction to the theory of supermanifolds, Russian Math. Surv. 35 (1980), 1-64. MR 565567 (81j:58003)
  • [12] J. Martin, The feynman principle for a fermi system, Proc. Roy. Soc. London Ser. A, 251 (1959), 543-549. MR 0109640 (22:526)
  • [13] A. Rogers, A global theory of supermanifolds, J. Math. Phys. 21 (1980), 1352-1365. MR 574696 (82d:58001)
  • [14] -, Super Lie groups: global topology and local structure, J. Math. Phys. 22 (1981), 939-945. MR 622840 (83a:22021)
  • [15] M. Rothstein, The axioms of supermanifolds and a new structure arising from them, Trans. Amer. Math. Soc. 297 (1986), 159-180. MR 849473 (87m:58015)
  • [16] Abdus Salam and J. Strathdee, Supergauge transformations, Nuclear Phys. B Proc. Suppl. (1974). MR 0356737 (50:9206)
  • [17] D. V. Volkov and V. P. Akulov, Is the neutrino a Goldstone particle?, Phys. Lett B 46 (1973), 109-110.
  • [18] J. Wess and B. Zumino, Supergauge transformations in four dimensions, Nuclear Phys. B 70 (1974), 39. MR 0356830 (50:9299)
  • [19] Peter West, Introduction to supersymmetry and supergravity, World Scientific, Singapore, 1990. MR 1112396 (92f:81004)

Review Information:

Reviewer: Alice Rogers
Journal: Bull. Amer. Math. Soc. 28 (1993), 184-189
DOI: https://doi.org/10.1090/S0273-0979-1993-00352-5
American Mathematical Society