Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF

Book Information

Author: C. A. Marinov and P. Neittaanmaki
Title: Mathematical models in electrical circuitsrm: theory and applications
Additional book information Kluwer Academic Publs., Dordrecht, 1991, 160 pp., $66.50. ISBN 0-7923-1155-8.


References [Enhancements On Off] (What's this?)

  • [1] R. K. Brayton and W. L. Miranker, A stability theory for nonlinear mixed initial boundary value problems, Arch. Rational Mech. Anal. 17 (1964), 358–376. MR 0168864 (29 #6120)
  • [2] P. K. Chan and K. Karplus, Computing signal delay in general RC networks by tree/link partitioning, IEEE Trans. Comput. Aided Design 9 (1990), 898-902.
  • [3] P. K. Chan and M. D. F. Schlag, Bounds on signal delay in RC mesh networks, IEEE Trans. Comput. Aided Design 8 (1989), 581-589.
  • [4] Leon O. Chua and Douglas N. Green, A qualitative analysis of the behavior of dynamic nonlinear networks: stability of autonomous networks, IEEE Trans. Circuits and Systems CAS-23 (1976), no. 6, 355–379. MR 0689400 (58 #33540)
  • [5] Leon O. Chua and Douglas N. Green, A qualitative analysis of the behavior of dynamic nonlinear networks: steady-state solutions of nonautonomous networks, IEEE Trans. Circuits and Systems CAS-23 (1976), no. 9, 530–550. MR 0465544 (57 #5442)
  • [6] C. A. Desoer and J. Katznelson, Nonlinear RLC networks, Bell Syst. Tech. J. 44 (1965), 161-198.
  • [7] Vaclav Dolezal, Nonlinear networks, Elsevier Scientific Publishing Co., Amsterdam, 1977. MR 0490486 (58 #9831)
  • [8] Vaclav Dolezal, Monotone operators and applications in control and network theory, Studies in Automation and Control, vol. 2, Elsevier Scientific Publishing Co., Amsterdam, 1979. MR 554232 (82e:93050)
  • [9] Toshio Fujisawa and Ernest S. Kuh, Some results on existence and uniqueness of solutions of nonlinear networks, IEEE Trans. Circuit Theory CT-18 (1971), 501–506. MR 0300433 (45 #9479)
  • [10] David S. Gao, Andrew T. Yang, and Sung Mo Kang, Modeling and simulation of interconnection delays and crosstalks in high-speed integrated circuits, IEEE Trans. Circuits and Systems 37 (1990), no. 1, 1–9. MR 1032402, http://dx.doi.org/10.1109/31.45685
  • [11] M. S. Ghausi and J. J. Kelly, Introduction to distributed parameter networks, Holt, Rinehart, and Winston, New York, 1968.
  • [12] R. O. Grondin, W. Porod, and D. K. Ferry, Delay time and signal propagation in large-scale integrated circuits, IEEE J. Solid-State Circuits 19 (1984), 262-263.
  • [13] M. Glez Harbour and J. M. Drake, Calculation of signal delay in integrated interconnections, IEEE Trans. Circuits and Systems 36 (1989), no. 2, 272–276. MR 979859 (89k:94086), http://dx.doi.org/10.1109/31.20204
  • [14] T. M. Lin and C. A. Mead, Signal delay in general RC networks, IEEE Trans. Comput. Aided Design 3 (1984), 331-349.
  • [15] J. K. Ousterhout, A switch-level timing verifier for digital MOS VLSI, IEEE Trans. Comput. Aided Design 4 (1985), 336-349.
  • [16] M. Passlack, M. Uhle, and H. Elschner, Analysis of propagation delays in high-speed VLSI circuits using a distributed line model, IEEE Trans. Comput. Aided Design 9 (1990), 821-826.
  • [17] L. T. Pillage and R. A. Rohrer, Asymptotic waveform evaluation for timing analysis, IEEE Trans. Comput. Aided Design 9 (1990), 352-366.
  • [18] J. Rubinstein, P. Penfield, Jr., and M. A. Horowitz, Signal delay in RC tree networks, IEEE Trans. Comput. Aided Design 2 (1983), 202-211.
  • [19] T. Sakarai, Approximation of wiring delay in MOSFET LSI, IEEE J. Solid-State Circuits 18 (1983), 418-426.
  • [20] I. W. Sandberg, Some theorems on the dynamic response of nonlinear transistor networks., Bell System Tech. J. 48 (1969), 35–54. MR 0238584 (38 #6860)
  • [21] I. W. Sandberg, Theorems on the analysis of nonlinear transistor networks, Bell System Tech. J. 49 (1970), 95–114. MR 0260484 (41 #5110)
  • [22] A. N. Willson Jr., On the solutions of equations for nonlinear resistive networks, Bell System Tech. J. 47 (1968), 1755–1773. MR 0266689 (42 #1592)
  • [23] Alan N. Willson Jr., New theorems on the equations of nonlinear 𝐷𝐶 transistor networks, Bell System Tech. J. 49 (1970), 1713–1738. MR 0267977 (42 #2877)
  • [24] J. L. Wyatt, Jr., Monotone sensitivity of nonlinear RC transmission lines with application to timing analysis of digital MOS integrated circuits, IEEE Trans. Circuits and Systems 32 (1985), 28-33.
  • [25] Q. Yu and O. Wing, Waveform bounds on nonlinear RC trees, Proc. 1984 Internat. Sympos. on Circuits and Systems, Montreal, 1984.
  • [26] Armen H. Zemanian, Infinite electrical networks, Cambridge Tracts in Mathematics, vol. 101, Cambridge University Press, Cambridge, 1991. MR 1144278 (93b:94034)
  • [27] C. A. Zukowski, The bounding approach to VLSI circuit simulation, Kluwer Academic Press, Dordrecht, 1986.
  • [28] J. M. Zurada and T. Liu, Equivalent dominant pole approximation of capacitively loaded VLSI interconnection, IEEE Trans. Circuits and Systems 34 (1987), 205-207.


Review Information

Reviewer: A. H. Zemanian
Journal: Bull. Amer. Math. Soc. 28 (1993), 194-198
DOI: http://dx.doi.org/10.1090/S0273-0979-1993-00354-9
PII: S 0273-0979(1993)00354-9