Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF
Book Information:

Author: Charles K. Chui
Title: An introduction to wavelets
Additional book information: Academic Press, New York 1992, x + 264 pp., US$49.95. ISBN 0-12-174584-8.

Author: Ingrid Daubechies
Title: Ten lectures on wavelets
Additional book information: CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1992, 357 pp., ISBN 0-89871-274-2.

References [Enhancements On Off] (What's this?)

  • [1] Ph. Bendjoya, E. Slezak, and Cl. Froeschlé, The wavelet transform: a new tool for asteroid family determination, Astronomy and Astrophysics 251 (1991), 312-330.
  • [2] P. Burt and E. Adelson, The Laplacian pyramid as a compact image code, IEEE Trans. Comm. 31 (1983), 482-540.
  • [3] Alfred S. Cavaretta, Wolfgang Dahmen, and Charles A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc. 93 (1991), no. 453, vi+186. MR 1079033, 10.1090/memo/0453
  • [4] Charles K. Chui, An introduction to wavelets, Wavelet Analysis and its Applications, vol. 1, Academic Press, Inc., Boston, MA, 1992. MR 1150048
  • [5] Charles K. Chui (ed.), Wavelets, Wavelet Analysis and its Applications, vol. 2, Academic Press, Inc., Boston, MA, 1992. A tutorial in theory and applications. MR 1161244
  • [6] A. Grossmann and Ph. Tchamitchian (eds.), Wavelets, 2nd ed., Inverse Problems and Theoretical Imaging, Springer-Verlag, Berlin, 1990. Time-frequency methods and phase space. MR 1088024
  • [7] Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107
  • [8] I. Daubechies, S. Mallat, and A. Willsky (eds.), Special issue on wavelet transforms and multiresolution signal analysis, IEEE Trans. Inform. Theory 38 (1992).
  • [9] David L. Donoho and Iain M. Johnstone, Minimax estimation via wavelet shrinkage, Ann. Statist. 26 (1998), no. 3, 879–921. MR 1635414, 10.1214/aos/1024691081
  • [10] Michael Frazier, Björn Jawerth, and Guido Weiss, Littlewood-Paley theory and the study of function spaces, CBMS Regional Conference Series in Mathematics, vol. 79, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1991. MR 1107300
  • [11] Pierre-Gilles Lemarié-Rieusset, Existence de “fonction-père” pour les ondelettes à support compact, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), no. 1, 17–19 (French, with English summary). MR 1149631
  • [12] P. G. Lemarié, Les ondelettes en 1989, Lecture Notes in Math., vol. 1438, Springer-Verlag, Berlin.
  • [13] Y. Meyer, Les ondelettes, algorithmes et applications, Armand Colin, 1992 (an English translation will be published by SIAM).
  • [14] Yves Meyer, Ondelettes, filtres miroirs en quadrature et traitement numérique de l’image, Les ondelettes en 1989 (Orsay, 1989) Lecture Notes in Math., vol. 1438, Springer, Berlin, 1990, pp. 14–25, 196–197 (French, with English summary). MR 1083580, 10.1007/BFb0083512
  • [15] Y. Meyer (ed.), Wavelets and applications, RMA: Research Notes in Applied Mathematics, vol. 20, Masson, Paris; Springer-Verlag, Berlin, 1992. MR 1276521
  • [16] Mary Beth Ruskai and Gregory Beylkin (eds.), Wavelets and their applications, Jones and Bartlett Publishers, Boston, MA, 1992. MR 1187335

Review Information:

Reviewer: Yves Meyer
Journal: Bull. Amer. Math. Soc. 28 (1993), 350-360
DOI: https://doi.org/10.1090/S0273-0979-1993-00363-X