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Introduction

The principal ideas of harmonic analysis on a locally compact group G which
is not necessarily compact or commutative were developed in the 1940s and

early 1950s. In this theory, the role of the classical fundamental harmonics is

played by the irreducible unitary representations of G. The set of all equiv-

alence classes of such representations is denoted by G and is called the dual

object of G or the unitary dual of G.

Since the 1940s, an intensive study of the foundations of harmonic analy-

sis on complex and real reductive groups has been in progress (for a definition

of reductive groups, the reader may consult the appendix at the end of §2).

The motivation for this development came from mathematical physics, differ-

ential equations, differential geometry, number theory, etc. Through the 1960s,

progress in the direction of the Plancherel formula for real reductive groups was

great, due mainly to Harish-Chandra's monumental work, while at the same

time, the unitary duals of only a few groups had been parametrized.

With Mautner's work [Ma], a study of harmonic analysis on reductive groups

over other locally compact nondiscrete fields was started. We shall first describe

such fields. In the sequel, a locally compact nondiscrete field will be called a

local field.
If we have a nondiscrete absolute value on the field Q of rational numbers,

then it is equivalent either to the standard absolute value (and the completion

is the field R of real numbers) or to a /?-adic absolute value for some prime

number p. For r e Q* write r = paa/b where a, a, and b are integers and

neither a nor b are divisible by p . Then the p-adic absolute value of r is

A completion of Q with respect to the p-adic absolute value is denoted by Qp .

It is called a field of p-adic numbers. Each finite-dimensional extension F of

Qp has a natural topology of a vector space over Qp . With this topology, F

becomes a local field. The topology of F can also be introduced with an absolute

value which is denoted by | \f (in §5 we shall fix a natural absolute value). The

fields of real and complex numbers, together with the finite extensions of p-adic

numbers, exhaust all local fields of characteristic zero up to isomorphisms [We].

Let F be a finite field. Denote by ¥((X)) the field of formal power series

over F. Elements of this field are series of the form / = J2™=k anXn > an € F,

for some integer k . Fix q > 1. Very often q is taken to be the cardinal number

of the finite field F. One defines an absolute value of / by the formula

F((AT)) -Q
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when / y¿ 0. In this way ¥((X)) becomes a local field. Fields of formal power

series over finite fields exhaust all local fields of positive characteristic up to

isomorphisms [We].

The fields R and C are called archimedean fields. For any x, y e Rx or

x, y eCx , there is always a positive integer n such that \y\ < \nx\. The above

property does not hold for any other local field. This is the reason that local

fields which are not isomorphic to R or C are called nonarchimedean local

fields.
After Mautner in the 1960s, a series of people started to consider reductive

groups over nonarchimedean local fields. Let us recall that p-adic fields were
introduced historically to enable one to consider a single equation over a p-adic

field instead of an infinite series of congruences mod pk . Arithmetical prob-

lems also provided motivation to consider representations of reductive groups

over such fields. The strongest motivation comes from the Langlands program.

A unifying element in this program is the representation theory of reductive

groups. A nice introduction to the Langlands program is [Gb3].

Let G be a reductive group over a local field. Harish-Chandra created a strat-

egy for obtaining the unitary dual G through the nonunitary dual G, where G

is the set of all functional equivalence classes of topologically completely irre-

ducible continuous representations of G. Functional equivalence means that

the matrix coefficients of one representation may be approximated by matrix

coefficients of another on compact sets, and vice versa. A complete definition

of G is in §2. To obtain G, one needs to classify G (the problem of the

nonunitary dual) and to identify G C G (the unitarizability problem). In [L2]

Langlands showed how to parametrize G by irreducible representations with

certain good asymptotic properties (tempered representations) of reductive sub-

groups, when the field F is R. The tempered representations were classified

for F = R by Knapp and Zuckerman [KnZu] on the basis of Harish-Chandra's

work, thus providing a complete picture of G. Despite the Langlands classifi-

cation of G in the archimedean case, there were no big breakthroughs in the

classification of unitary duals for quite a long time. Borel-Wallach and Silberger

proved that Langlands parametrization of G in terms of tempered representa-

tions of reductive subgroups was valid for reductive groups over all local fields

[BIWh, Sil].
In this paper, we shall be concerned with the unitarizability problem for re-

ductive groups over local fields. One usually breaks the unitarizability problem

into two parts. The first part is constructing elements of G, and the second

is showing that the constructed representations exhaust G (completeness ar-

gument). The completeness argument is usually realized by showing that the

classes of G\G are not unitarizable. We may call such an approach to the
completeness argument indirect.

Suppose that the field is archimedean. Then one can linearize the problems

for G (and G) ; one can "differentiate" the representations and come to the

infinitesimal theory where the main object is the Lie algebra g of G. Also, for

a maximal compact subgroup K of G, the theory of compact Lie groups gives

an explicit description of K. Thus, one may try to understand (it, H) e G

by studying the restriction of it to K. These two points explain why, in the
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archimedean case, some problems concerning representations, and especially

the unitarizability problem, were often approached by studying the internal
structure of representations. Let us recall that the internal approach was very

successful in the compact Lie group case (restriction to a maximal torus). In

the nonarchimedean case, there is no possibility of such an internal approach

to the unitarizability problem. One of the reasons that there has been much

less study of the unitarizability problem is that the nonunitary duals are not yet

completely parametrized there.
Despite the fact that unitary duals of a very restricted number of groups

have been classified, it is interesting to note that in 1950 Gelfand and Naimark

published a book [GfN2] in which they constructed what they assumed to be

the dual objects of the complex classical simple Lie groups. Their lists were very

simple, and the representations were also simple (although infinite dimensional).

Gelfand and Naimark were using functional analytic methods as tools in their

analysis. In 1967 Stein constructed, in a fairly simple manner, representations

in GL(2«, C)" which were not contained in the lists of Gelfand and Naimark

[St]. For some other classical groups, it was even easier to see the incompleteness

of the lists from [GfN2].
The representations of Gelfand and Naimark of GL(«, C), complemented

by Stein, were not generally expected to exhaust the whole of GL(«, C)".

The main aim of this paper is to present the ideas which lead first to the

solution of the unitarizability problem for GL(«) over nonarchimedean local
fields [Td3] and to the recognition that the same result holds over archimedean

local fields [Td2], a result which was proved by Vogan [Vo3] using an internal

approach. Let us say that the approach that we are going to present may be

characterized as external. At no point do we go into the internal structure of

representations.

Let us present the answer. We fix a general local field F. Let D" be the

set of all functional equivalence classes of irreducible square integrable modulo

center representations of all GL(«, F), n > 1 (for definition see §3). Let | \F

be the modulus of F (see §5). For each representation S e Du of GL(«, F),

and for each m > 1, consider the representation of GL(m«, F) parabolically

induced (§1) by

| det \{rl)/2S ® | det |^-3)/2¿ ® • • • ® | det |-(w-,)/2<?

from a suitable standard parabolic subgroup (i.e., from one containing the upper

triangular matrices, §2). This representation has a unique irreducible quotient

which will be denoted by u(S, m). For 0 < a < 1/2 let it(u(5, m), a) be the
representation of GL(2mn, F) parabolically induced by

| det \Fu(S ,m)<»\ det \pau(S, m).

Denote by B all possible u(ô, m) and it(u(6, m), a). Then the answer is

Theorem, (i) Let x\, ... ,xn € B. Then the representation it parabolically

induced by

X\® •••®T„

of suitable GL(m, F) is irreducible and unitary.
(ii) Suppose that p is obtained from o\, ... , a„ e B in the same manner as

it was obtained from t\, ... ,xm in (i). Then n = p if and only if n = m and

the sequences (x\, ... , x„) and (o\, ... , a„) coincide after a renumeration.
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(iii) Each irreducible unitary representation of GL(m, F), for any m , can

be obtained as in (i).

A new, and at the same time very old, point of view that led to the papers

[Tdl-Td3] was that the unitarizability problem has a reasonably simple answer

and that the unitary representations appear in simple and natural ways. In the

completeness argument, instead of an indirect strategy, a direct argument was

used. In this way, a detailed study of nonunitary representations was avoided.

In all arguments, essentially only Hubert space representations were necessary.

Surprisingly, the statement of the theorem, which was first discovered in the

nonarchimedean case in [Td3], says that in the case F = C the unitary dual

of GL(«, C) should consist of the representations of Gelfand, Naimark, and

Stein. Not only the statement of the nonarchimedean case of the theorem, but

also the methods of the proof in [Td3] made sense in the archimedean case.

Thus, after a complete proof had been written in the nonarchimedean case, we

wrote in [Td2] the proof of the archimedean case of the theorem. We have

used there a theorem of Kirillov from [Kil], for which he never published the

complete proof (see §9).

There are now many solutions of the unitarizability problems, especially for

particular reductive groups in the archimedean case. In general, they are based

on ideas different than the one that we present in this paper. Two of them

take a distinguished place (they solve completely the problem for a series of

groups having no bounds on their semisimple split ranks). The first is Vogan

classification in [Vo3] of the unitary duals of GL(n) over R, C, and H. He

proved a theorem equivalent to the statement of our theorem for archimedean

F . The other one is Barbasch's classification of the unitary duals of the complex
classical Lie groups in [Bb].

Since we consider both the archimedean and nonarchimedean cases, it is

natural to recall Harish-Chandra's Lefschetz principle: "Whatever is true for

real reductive groups is also true for p-adic groups" [Ha2]. One problem with

the Lefschetz principle is that we usually obtain a result for archimedean F

by one kind of considerations and for nonarchimedean F by very different

methods, and after that we compare the results. An interesting problem is to

explain the phenomenon of the Lefschetz principle, which is certainly related
to our depth of understanding of these two theories. An important task of this

paper is to present a unified point of view on the theorem and its proof. We

shall discuss both the theorem and the proof, making no distinction concerning

the nature of the field. This is possible by the use of the external point of

view. In our approach we shall very often be close to the point of view of

the representation theory of general locally compact groups, and this will be a
unifying point.

Professor P. J. Sally suggested that I write a paper where the ideas would
be extracted from the technical machinery as much as possible. I am thankful

to him for his advice and encouragement and for his generous help during the

writing of various drafts of this paper, which he has read. I am also thankful
for the hospitality and support of the University of Chicago during the summer

of 1986 when a sketch of this paper was prepared. I would like to express my

thanks to a number of mathematicians for helpful discussions or encouragement

during the writing of this paper and the preceding ones on the same topic.
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Let me mention just a few of them: M. Duflo, I. M. Gelfand, H. Kraljevic,

D. Milicic, F. Rodier, P. J. Sally, and M. F. Vigneras. H. Kraljevic gave very

helpful comments on the first draft of this paper. Discussions with D. Milicic

and his suggestions were of great help in the preparation of the paper. The

referee gave a number of valuable and helpful suggestions to the preceding draft

of this paper. Among others, the work of J. Bernstein and A. V. Zelevinsky

greatly influenced the development of some ideas presented in this paper. The

final step in preparation for publishing this paper was done in Göttingen. I am

thankful for hospitality and support to the Sonderforschungsbereich 170 and

S. J. Patterson.
We hope that this paper will illustrate a certain internal symmetry in the ex-

ternal approach to the unitarizability problem. We hope that some of our ideas

will be helpful in dealing with the unitary duals of other nonarchimedean clas-

sical groups (and also nonunitary duals). The papers [SlTd] and [Td8] indicate

that this hope is not without basis.

Finally, we introduce some general notation which we shall use throughout

the paper. For a topological space X, C(X) will denote the space of all continu-

ous (complex-valued) functions on X. The subspace of all compactly supported

continuous functions will be denoted by CC(X). If we have a measure ¡x on

X, then L1 (X, p) will denote the space of all classes of //-integrable functions

on X and L2(X, p) will denote the Hubert space of all classes of square inte-
grable functions on X with respect to p. For a smooth manifold X the space

of smooth functions on X will be denoted by Cco(X) and C°°(X)nCc(X) will

be denoted by C£°(X). If X is a totally disconnected locally compact topolog-

ical space, then C£°(X) will denote the space of all compactly supported locally

constant functions on X. The fields of real and complex numbers are denoted

by R and C respectively. The ring of integers is denoted by Z, nonnegative

integers are denoted by Z+ , and positive ones are denoted by N .

1. Concept of harmonic analysis
on general locally compact groups

In this section we shall outline some of the ideas of harmonic analysis on
locally compact groups.

Let G be a locally compact group. We shall always suppose in this paper

that the groups are separable. A representation of G is a pair (n, V) where V

is a complex vector space which is not zero dimensional and it is a homomor-

phism of G into the group of all linear isomorphisms of V. By a continuous

representation of G we shall mean a representation (n, H) of G where H is a

Hubert space and the map (g, v) i-» n(g)v, Gx H —> H is continuous (we shall

always assume that H is separable). A closed subspace H' of H will be called

a subrepresentation of a continuous representation (it, H) of G, if H' is in-

variant for all operators it(g), g € G. A continuous representation (71, H) of

G is called irreducible if there does not exist a nontrivial subrepresentation of

(it, H) (i.e., different from {0} and H). A continuous representation (n, H)

of G will be called a unitary representation if all the operators n(g), g e G, are

unitary. Two unitary representations (it,■, H¡), 1' = 1, 2, of G are called uni-

tarily equivalent if there exists a Hubert space isomorphism q> : H\ —> Hj such

that it 2(g) <p — <pit\(g) for all g eG. The set of all unitarily equivalence classes



220 MARKO TADIC

of irreducible unitary representations of G will be denoted by G and called the

unitary dual of G. For a family (n,,//,-),/ e /, of unitary representations of

G, there is a natural unitary representation of G on the direct sum of Hilbert

spaces ©,e/ Hi. This representation will be denoted by (®;6/ it¡, 0,6/ H¡).

It is called a direct sum of representations (it,, H¡), i e /.
A continuous representation (resp. unitary representation) on a one-dimen-

sional space is called a character (resp. unitary character) of G.

The main problem of harmonic analysis on the group G is to understand

some interesting unitary representations of G (such representations are usually

given on function spaces). One way to study this problem is to break it into

two parts (at least for type I groups which will be described in the sequel of this

section and which will be the only groups considered in this paper). The first

part is to understand irreducible unitary representations, i.e., G, and the second

part is to understand other unitary representations in terms of irreducible ones.

This strategy is in the spirit of Fourier's classical idea of fundamental harmonics.
Let us explain what we mean by understanding general unitary representa-

tions in terms of irreducible ones. If G is a compact group, then a fundamental

fact is that each unitary representation of G can be decomposed into a direct

sum of irreducible unitary representations [Di, Theorem 15.1.3.]. Understand-

ing a unitary representation n in terms of irreducible unitary representations

means, in the compact case, to know how to decompose it into a direct sum

of irreducible unitary representations. In the noncompact case each unitary

representation decomposes into a direct integral of irreducible unitary repre-

sentations, and understanding here again means to know how to decompose a

given unitary representation into a direct integral of irreducible representations.

We are not going to define here the notion of direct integral of representations

because the definition is quite technical. The interested reader may consult [Di,

§8]. Let me only mention that the direct integral generalizes the notion of direct

sum and that direct integrals are determined by measures on G. To consider

measures on G, one needs some er-ring of sets. This cr-ring arises in a stan-

dard way from the natural topological structure on G. Now we shall define this
topology.

If (it, H) is a continuous representation of G and v, w € H, then the

function g >-► (it(g)v , w) on G is called a matrix coefficient of (n, H). We

denote by &(n) the linear span of all matrix coefficients of (it, H). The closure

operator on subsets of G is defined as follows. Let it € G and X C G. Then

it € Cl(X) if and only if each element of 3>(7t) can be approximated uniformly

on each compact subset of G by elements from \Ja€X 0(a). This topology on

G will be called the topology of the unitary dual of G.
If G is a commutative group, then each irreducible unitary representation

of G is given on a one-dimensional space (this follows easily from the spectral

theorem). Thus each it € G is a function. Pointwise multiplication of element

of G defines a group structure on G. Together with the above topology, G is

again a locally compact commutative group which is called the dual group of

G. The role of the topology of the unitary dual is crucial in harmonic analysis

on locally compact commutative groups. This topology is a basis on which one

builds the fundamental facts of the harmonic analysis on commutative groups.
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One of these fundamental facts is that G and (G")~ are canonically isomorphic

(Pontryagin duality).

In the case of noncommutative groups, the role of this topology on G is less

crucial than in the commutative case, but it is still an important and natural

object to consider. For example, G is a type I group if and only if G is a

7o-space, i.e., for any two different points in G, at least one of them has a

neighborhood which does not contain the other one [Di, 9.5.2. and Theorem

9.1]. It is important to notice that, in general, G is not topologically homoge-

neous and there exist significant connections between properties of irreducible

representations and their position in G with respect to the topology.

Before we proceed further, we shall say a few words about some measures

which are natural to consider on locally compact groups. For a locally compact

group G, there exists a positive measure invariant for right translations. Such

a measure will be called a right Haar measure on G and it will be denoted by

pG ■ Thus,

i f(gx)dpG(g) =   [ f(g)dpG(g)
Jg Jg

for any f e CC(G) and x G G. Any two right Haar measures are proportional.

The behavior of a right Haar measure for left translations is described by the
modular function. There exists a function AG on G such that

i f(xg)dpG(g) = AG(x)-1   f f(g)dpG(g)
Jg Jg

for any / € CC(G) and x e G. The group G is called unimodular if AG = 1,
i.e., if pG is also invariant for left translations. For more information about

Haar measures and for proofs of the above facts one may consult [Bu2].

Suppose that G is unimodular.  The space CC(G) becomes an algebra for
the convolution which is defined by the formula

(f*fi)(x) = i f(xg-l)f2(g)dpG(g),
Jg

fi, fi & CC(G). In a natural way one can extend the convolution to Ll (G, pG).

Then LX(G, pG) becomes a Banach algebra. For /€ CC(G) and a continuous
representation it of G set

7t(f)   =    f f(g)lt(g)dßG(g).
Jg

Now n becomes a representation of the convolution algebra CC(G), and this

representation is called the integrated form of the representation n of G. If

it is unitary, then the last formula also defines a representation of the algebra

Ll(G, pG). Moreover, it is a ^-representation if we define f*(g) - f(g~l) ■

We have already mentioned that the basic problem of harmonic analysis on

G is to classify G and then to decompose interesting representations in terms

of G. Among the interesting representations, there is one that should be the
first to be understood, namely, the regular representation on L2(G, pG). By the

abstract Plancherel theorem, for a unimodular group G there exists a unique

positive measure v on G such that

i \f(g)\2dpG(g) =   ÍTrace(it(f)7t(fy)dv(it)
Jg Jg
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for all fe LX(G, pG) n L2(G, pG) [Di, Theorem 18.8.2]. The measure v is
called the Plancherel measure of G (it determines an explicit decomposition of

L2(G, pG) into a direct integral of elements of G).

While the basic ideas of harmonic analysis on general locally compact groups

were laid down in the 1940s, one of the first breakthroughs in classifying unitary

duals was the work of Kirillov for nilpotent Lie groups at the beginning of the

1960s (see [Ki2, §§13 and 15]).
Let us first recall that a Lie group is a group supplied with a structure of

a (real) analytic manifold such that the group operations (i.e., multiplication

and inversion) are analytic mappings. We can define the Lie algebra g of a

Lie group G as the tangent space of G at the identity, supplied with a bracket

operation [ , ] which can be defined in the following way. If X, Y e g are

tangent vectors to curves x(t), y(t) for t = 0 respectively, then [X, Y] is the

tangent vector to the curve

t^x(x)y(r)x(x)-iy(x)-1

where t = sgn (í)|í|1/2 , at t = 0 [Ki2, 6.3.]. An element g e G acts on G by

inner automorphism. The differential of this action is denoted by Ad(g). In

this way G acts on g, and this action is called the adjoint action of G on g.

Let G be a connected simply connected nilpotent Lie group, and let g*

be the space of linear forms on the Lie algebra g of G. There is a natural

action of G on g*. It is called the coadjoint action of G. Using the theory

of induced representations (which we shall discuss a bit later in this section),

Kirillov established a canonical one-to-one mapping from the set of all coadjoint
orbits onto the unitary dual of G

G\fl* -* G

which gives a simple description of the unitary dual. With a natural topology

on the left-hand side, this is a homeomorphism. Kirillov theory also gives the

characters of irreducible unitary representations and the Plancherel formula for
nilpotent Lie groups.

In the second part of this section, we define some notions that we shall need
in the sequel.

If G is a compact group, then each n e G is given on a finite-dimensional

space [Di, 15.1.4.]. As in the theory of finite group representations, the function

On : g ^ Trace it(g),

which is called the character of the representation it, completely determines the

class of it in G. We have a right Haar measure on G. Thus the character
function determines a distribution on a compact Lie group G. It is easy to see
that this distribution is

/~ Tracen(f), f e C™(G),

which will be denoted by 0* again. If n is an infinite-dimensional represen-

tation, obviously the trace as a function is not well defined. Nevertheless, it

may happen that the above distribution is well defined. For an arbitrary Lie

group G, one can take the above distribution for the definition of the character

of n e G, if it(f) is trace-class for / e C£°(G).   If n(f) has a trace for
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/ e C£°(G), then it(f) must be a compact operator for any f e Ll(G, pG). If

all it e G have characters in the above sense, then it(f) is a compact operator

for any it e G and f e Ll(G, pG).
A locally compact group is called a CCR-group if n(f) is a compact oper-

ator for any it e G and f e Ll(G, pG). All CCR-groups are of type I [Di,
Proposition 4.3.4. and Theorem 9.1]. A great number of very important groups

are CCR-groups. The most important classes of CCR-groups are commutative

groups, compact groups, nilpotent Lie groups, and reductive groups over local

fields (reductive groups will be defined in the appendix at the end of the fol-

lowing section). In particular, classical groups over local fields are CCR-groups.

One can characterize CCR-groups in terms of the topology of the unitary duals.

A group G is a CCR-group if and only if G is a 7¡-space, i.e., if the points

are closed subsets of G [Di, 9.5.3.].
For some important classes of groups one can show that they are CCR-groups

by showing that they have so-called "large" compact subgroups. Now we shall

explain the last notion.

Let G be a locally compact unimodular group, and let K be a compact

subgroup. For ô e K and a continuous representation (n,Hn) of G, let

H„(S) be the subspace of Hn spanned by all subrepresentations of it\K which

are isomorphic to ô (here it\K denotes the representation of K obtained by

restriction from G). If

áimcH^ó) < oc

for all ô e ^,then it is called a representation of G with finite K-multiplicities.

One calls K a large compact subgroup of G if for each ô e K the function

it i-> dime H„(S)

is a bounded function on G. If G has a large compact subgroup, then G is a

CCR-group [Di, Theorem 15.5.2]. Some very important classes of groups have

large compact subgroups, for example, reductive groups over local fields.

For a continuous representation (it, H) of G, a vector v e H is called

K-finite if the span of all it(k)v , k e K,  is finite dimensional.

In the rest of this section we shall discuss some parts of the theory of the

induced representations for locally compact groups. The notion of induced

representations for locally compact groups generalizes the well-known notion

of induced representations for finite groups that was introduced and studied

by Frobenius and Schur. Induction is one of the simplest and most important

procedures for obtaining new representations of locally compact groups.

The most important case of induction for the purpose of this paper is para-

bolic induction. To define this notion, it is enough to consider a closed subgroup

P of a unimodular group G and assume that there exists a compact subgroup

K of G such that PK = G. Let (a, M) be a continuous representation of

P. The space of all (classes of) measurable functions / : G —> H which satisfy

f(pg) = Ap(p)l/2o(p)f{g),       peP, geG,

and

ll/ll2 = / ll/WII2 dpK(k)  < oo
Jk
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will be denoted by lndp(a). It is a Hubert space. The group G acts by right

translations on lndp(a). This action we denote by R. Thus

(Rgf)(x) = f(xg).

With this action, lndp(a) is a continuous representation of G. It is unitary if

a is unitary.
In our considerations G will be a reductive group over a local field, while

P will be a parabolic subgroup of G (these terms will be defined in the fol-

lowing section). One will take a Levi decomposition P = MN of P and a

continuous representation a of M. Since P/N = M, we shall consider a

as a representation of P. Then we shall say that Ind^(a) is a parabolically

induced representation of G by a .

We shall also talk at some points in this paper about induced representations

which are of more general type. Let G be a locally compact group which does

not need to be unimodular, and let C be a closed subgroup of G. Suppose

that a unitary representation (a, H) of C is given (we may assume that a

is a continuous representation only). We denote by Ind^(ff) the space of all

measurable functions / : G —> H which satisfy

f(cg) = [Ac^AM-^a^Ag),       ge G, ceC.

One square integrability condition is required also. This condition is more

technical than in the case of parabolic induction [Ki2, 13.2]. Again G acts by

right translations on Ind£(a). This is a unitary representation of G. We say

that Ind£(a) is unitarily induced by a .

Mackey obtained a simple criterion for testing if a given unitary representa-

tion of G is unitarily induced from C (Imprimitivity Theorem, [Ki2]). There
is an important specialization of this theory. If G contains a nontrivial nor-

mal abelian subgroup N, then Mackey theory implies a description of G by

irreducible unitary representations of smaller groups (G and N need to satisfy

certain general topological conditions). Let x € N and denote by Gx the sta-

bilizer of ^ in G (G acts on N because G acts on N by automorphisms).

Note that N consists of unitary characters. Take an irreducible unitary rep-

resentation a of Gx such that a\N is a multiple of x ■ Then Ind^ (a) is

an irreducible unitary representation of G. One obtains all irreducible uni-

tary representations of G by the above construction. Two such representations

constructed from xi > °i and xi > °2 are equivalent if and only if Xi, o\ and
Xi, ai are conjugate. This specialization of Mackey theory is usually called

small Mackey theory. In the special case when G is a semidirect product of a

closed normal abelian subgroup N and a closed subgroup M, the small Mackey

theory describes G more simply. Here G is parametrized by unitary characters

of N and irreducible unitary representations of their stabilizers in M, divided

by a natural equivalence.

For our purpose, the case of semidirect products is the most interesting one. It

is important to observe that one obtains here automatically the irreducibility of

some induced representations. For a more detailed exposition of small Mackey

theory, one may consult [Ki2, 13.3].

2. The nonunitary dual as a tool for the unitary dual

In the study of the representation theory of the general linear groups, and

more generally, of the classical groups, the terminology of the theory of reductive
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groups is very useful and natural. We shall very briefly recall some of the

terminology of this theory in the first part of the appendix at the end of this

section. The reader may also skip over the general definitions and follow only
the case of GL(n) where we shall not need these general definitions.

We begin this section with a few definitions. We shall first define parabolic

subgroups in GL(«, F). Take an ordered partition

a = («i, «2, ... ,nk)

of n . Consider block-matrices

Mu.Axk

A =

■ Ak\.Akk\

where Au is an n¡ by n¡ matrix. Denote

Pa = {A e GL(n, F) ; Au = 0 for i > j},

Ma = {Ae GL(«, F) ; Au = 0 for i ¿ j).

Let Na be the set of all A e Pa such that all An are identity matrices. Now
Pa is called a standard parabolic subgroup of GL(«, F), Ma is called a Levi

factor of Pa, and Na is called the unipotent radical of Pa. The subgroup

P(\, i,..., i) of all upper triangular matrices in GL(«, F) is called the standard
minimal parabolic subgroup.

Take any g e GL(«, F) and any ordered partition a = (n,\, n-i, ... , nk)
of n . Then gPag~l is called a parabolic subgroup of GL(«, F). Set P' =
gPag~x, M' = gMag-x, and N' = gNag~l. Then P' = M'N' is called a

Levi decomposition of P'. The group M' is called a Levi factor of P', and N'

is called the unipotent radical of P'. Similarly, a minimal parabolic subgroup

is defined to be any conjugate of the standard minimal parabolic subgroup.

We shall now introduce the nonunitary dual. We denote by G a reductive

group over a local field F. There exists a maximal compact subgroup AT of G

such that PminK — G for some minimal parabolic subgroup Pmin of G. We

fix such a maximal compact subgroup. The Iwasawa decomposition PminK = G

holds for any maximal compact subgroup A" of G if F is an archimedean

field. If it is not, this may not be true for all maximal compact subgroups. The

group K isa large compact subgroup of G in the sense of the previous section.

In the case of GL(«, F) and F = R (resp. F = C), one may take for K
the group of orthogonal matrices (resp. the group of unitary matrices). If F is
nonarchimedean, one may take K in GL(n, F) to be GL(« ,&f), where @f

is the ring of integers in F, that is, @f = {x e F ; \x\f < 1}. In a general
linear group over any local field, all maximal compact subgroups are conjugate.

We shall always assume in the sequel that continuous representations of G
that we consider have finite AT-multiplicities.

For a continuous representation n of G, we have denoted by 0(7r) the

linear span of all matrix coefficients of it. This is a subspace of C(G). Denote

by C10(7t) the closure of 0(7t) with respect to the open-compact topology on
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C(G). Then two continuous representations nx and itj of G are said to be

functional equivalent if

C1#(äi) « CW>(ff2).

We denote by G the set of all functional equivalence classes of continuous irre-

ducible representations of G which have finite ÄT-multiplicities. These repre-

sentations are precisely the topologically completely irreducible representations

of G (for a definition of the last notion, one may consult [Wr, 4.2.2.]). The set

G is called the nonunitary dual of G. We could use Naimark equivalence to

define G instead of the functional equivalence. We would get the same object.

Two continuous representations (it\, Hx) and (712, Hi) are called Naimark

equivalent if there exist dense subspaces Vx ç H\ and V2 C H2 which are in-

variant for integrated forms and a closed one-to-one linear operator <p from Vx
onto V2 such that

(lt2(f)(p)(x) = (<p7tx(f))(x)

for any / e CC(G), x e Vx.
For an irreducible continuous representation it of G which has finite K-

multiplicities, the operator n(f) is of trace-class if f € C£°(G). The linear
form

/ h-» Trace(7i(/))

is denoted by 6* and called the character of the representation it. Two irre-

ducible continuous representations with finite ^-multiplicities are functionally

equivalent if and only if they have the same characters. Furthermore, characters

of representations from G are linearly independent.

The natural mapping G —► G is one-to-one (G is a CCR-group). Therefore,

we shall identify G with a subset of G. A class it e G will be called unitarizable

or unitary if n e G ç G. One supplies G with a topology in the same way as

we have supplied G with the topology of the unitary dual.

The reader may consult the second part of the appendix at the end of this

section for standard realizations of the set G. Those realizations depend on

whether the field is archimedean or not.

The idea of Harish-Chandra was to break the problem of describing G into

two parts: the problem of the nonunitary dual and the unitarizability problem.

The problem of determining the nonunitary dual appeared to be much more

manageable than the unitarizability problem.

Besides the above general strategy, there could be other strategies for getting

G. It would be interesting to obtain a classification of the unitary duals dealing

with nonunitary representations as little as possible or perhaps not at all. A

strategy of such classification for GL(«) over archimedean fields dealing with

only unitary representations can be based on a paper from 1962 by Kirillov

[Kil]. We shall return to [Kil] in §9. Now we shall outline the strategy.

Let Pn be the subgroup of GL(«, F) of all matrices with the bottom row

equal to (0, 0, ... , 0, 1 ). An interesting property of P„ follows from the

small Mackey theory: P„ is in a bijection with

GL(« - 1, F}' U GL(« - 2, F)' U • • • U GL(2, Ff U GL( 1, F)' U GL(0, F)~

(GL(0, F) denotes the trivial group). Gelfand and Naimark showed already in
1950 that certain irreducible unitary representations of SL(n, C), which they
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expected to exhaust SL(«, C)", remain irreducible as representations of P'n

where P'n denotes the subgroup of SL(«, C) of all matrices with the bottom

row of the form (0, ... , 0, x), x e Cx . They obtained this result from the

explicit formulas for those representations. Kirillov's idea was to first find a

general proof of the irreducibility of it\P„ for it e GL(«, F)~ when F = R

or C. Then one has an inductive procedure for classification. After classifying

GL(w, F)~ for m < n - 1, one also has a classification of P„ by the above

remark about Pn . Thus, the second part of the strategy is to find all possible

extensions of representations from Pn to unitary representations of GL(«, F).

This strategy was used by I. J. Vahutinskii in his study of irreducible unitary

representations of GL(3, R).

At the end of this section we shall say a few words about the characteristics of

some approaches to the unitary duals of certain groups in two relatively simple

cases.

We shall first consider the case of a compact Lie group G. We shall assume

that G is connected. One starts from an irreducible unitary representation

(it, H) of G, and studying the internal structure of H, one comes to exact

parameters which classify G . Let us give a rough idea of how this approach

goes. A closed connected commutative subgroup of G is called a torus in G.

Each torus is isomorphic to some T" where T is the group of all complex

numbers of norm one. We fix a maximal torus T in G. Then each element of

G is conjugate to an element of T, i.e., each conjugacy class of G intersects

T. Suppose that it is a continuous representation of G on a finite-dimensional

space H. One can choose an inner product on H invariant for the action of

G. Thus the representation it | T decomposes into a direct sum of some unitary

characters X\> ■ ■ • > Xm ■ These unitary characters are called the weights of it

with respect to T. Take now (it, H) e G. We have already mentioned that

the character 6^ of the representation it determines the class of it. Since the

character Qn , as a function on G, is obviously constant on conjugacy classes,

it is already determined by it\T, i.e., it is determined by its weights. Further

analysis of the structure of the representation it on H requires the study of

the representation of the Lie algebra (the formula (L.A.) in the appendix at the

end of this section, defines the action of the Lie algebra). It gives that there is

a particular weight among all weights of it which already characterizes it (the

highest weight). In this way one obtains a parametrization of G by a certain
subset of characters of T (the dominant weights). For an exposition of this

nice theory of Weyl and Cartan, one may consult, among many nice expositions,
the seventh paragraph of [Bui].

We shall present now a simple strategy for solving the unitarizability problem

for G = SL(2, R). One may take for K the group SO(2) of all two-by-two
orthogonal matrices of determinant one. Note that SO(2) = T. The unitary
dual of K is given by the characters

cos((p)    -sin((p)

ùx\((p)     cos($?)
,inip

when n runs over Z. If (it, H) e G, then it is not hard to show that mul-

tiplicities of the representation n\K are one, i.e., H(an) are either zero- or

one-dimensional subspaces.   This can be seen in a similar way as one shows
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that the space of Ä^-invariant vectors in an irreducible representation is one di-

mensional if (G, K) is a Gelfand pair [GfGrPi, Chapter III, §3, no. 4]. Thus,
there is a basis {vn ; n e S} of the Hubert space H, parametrized by a subset
S of Z. Suppose that it is a unitary representation with a G-invariant inner

product ( , ) on H. The formula (L.A.) from the appendix defines the

representation of the Lie algebra g of G on AMinite vectors. Differentiating

the relation (it(g)v , it(g)w) = (v , w), g e G, along one-parameter subgroups,

one gets that the representation on AT-finite vectors satisfies

(it(X)v , w) =-(v , n(X)w)

for all X e g. Put ||t>„|| = c„ . Since vn,n e S, are orthogonal, the inner

product is completely determined by numbers cn, n e S. One can solve the

unitarizability problem in the following way. Take (it, H) e G and check if

there exist positive numbers cn, n e S, such that the inner product

(¡C X'v' ' Y, Wi) = Y, cfkfii

satisfies (it(X)v, w) + (v , n(X)w) = 0 for all AMinite vectors v and w in

H and all X e g. All n for which there exist such numbers form the unitary

dual. Clearly, to be able to solve the above problem, we need to know explicitly

the internal structure of irreducible representations of G.

In the above two examples, one solves the problem by study of the internal

structure of representations.

Appendix

Algebraic groups. We shall recall very briefly in the first part of this appendix

some definitions from the theory of algebraic groups. For precise definitions

containing all details, one should consult [Bl].

A linear algebraic group G is a Zariski closed subgroup of some general
linear group with entries from an algebraically closed field. A linear algebraic

group is called unipotent if it is conjugate to a subgroup of the upper triangular

unipotent matrices. A linear algebraic group G is called reductive if G does

not contain a normal Zariski closed unipotent subgroup of positive dimension.
A linear algebraic group G is called semisimple if it is reductive and if it has a

finite center. If a noncommutative linear algebraic group G does not contain a

proper normal Zariski closed subgroup of positive dimension, then G is called

a simple algebraic group. If there is a group isomorphism of G onto some

GL(1)" which is also an isomorphism of algebraic varieties, then G is called a

torus.

A Zariski closed subgroup P of G is called a parabolic subgroup if the

homogeneous space G/P is a projective variety.
By a reductive group, we shall mean the group G(F) of all F-rational points

of a reductive group G which is defined as an algebraic variety over a local field

F . By a parabolic subgroup of a reductive group G(F), we shall mean the group

of all rational points of a parabolic subgroup of G, which is defined over F .

A minimal parabolic subgroup of G(F) is a parabolic subgroup which does not

contain any other parabolic subgroup. All minimal parabolic subgroups in G(F)

are conjugate. If we fix a minimal parabolic subgroup Pmin of G(F), then the

parabolic subgroups containing Pmin are called standard parabolic subgroups.
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Each parabolic subgroup in G(F) is conjugate to a standard parabolic subgroup.

Let P be a parabolic subgroup of G(F). Among Zariski connected normal
unipotent subgroups of P there is the maximal one. It is called the unipotent

radical of P. Denote it by N. There exists a reductive subgroup M of P

such that P - MN and M n N = {1}. Note that P is then a semidirect

product of N and M. One says that P = MN is a Levi decomposition of P.

Also, one says that M is a Levi factor of P.

Since a reductive group G(F) is a closed subgroup of GL(n , F), G(F) is in

a natural way a locally compact group. If F is an archimedean field (i.e., F - R

or C), then G(F) is a Lie group in a natural way. If F is a nonarchimedean
field, then G(F) is a totally disconnected group.

In the sequel, a reductive group G(F) will usually be denoted simply by G.

The most important examples of reductive groups are the classical groups

such as general linear groups GL(«, F), special linear groups, symplectic groups

and orthogonal groups. The groups GL(«, F) form the simplest series of re-

ductive groups and one of the first series to be considered.

Even if one is interested in harmonic analysis on some particular class of

classical groups, it is usually necessary to study a broader class of groups because

some important constructions involve subgroups which may not belong to the

considered class. Such subgroups are reductive. This is the reason why it is

convenient to use the terminology of reductive groups even if we consider some
specific class of groups.

Realizations of G. The set G has the following realizations, depending on

whether the field is archimedean or not. We shall not use these realizations

in the sequel, so the reader can also skip over these definitions. We note that

the following notions are very important in the theory. It is also interesting to

note how different G looks in the following archimedean and nonarchimedean
realizations.

Suppose that F is an archimedean field. First, we shall give a definition of a

(g, AT)-module (g is the Lie algebra of G). A representation n of a Lie algebra

g is a real-linear map from g into the space of all linear operators on a complex
vector space V such that

n([X, Y]) = n(X)it(Y) - n(Y)n(X)

for any X, Y e g. If we have a Lie group G and a continuous representation

it of G on a finite-dimensional space V, then the following limit exists

(LA.) n(X)v = £-t[n(x(t)v)]t=0,        veV,

and it defines a representation of the Lie algebra g of G on F (in the above

formula leg and X is the tangent vector to the curve x(t) at t = 0). We

call this Lie algebra representation the differential of n . Suppose now that G

is a reductive group over F and t the Lie algebra of K. Let (it, V) be a pair

where F is a complex vector space and it = (ne, it*) is again a pair consisting

of a Lie algebra representation ng of g on V and of a representation itK of

K on V, such that the following three conditions are satisfied.

(a) For each v e V the vector space W spanned by all nK(k)v, k e K,
is finite dimensional and the representation of K on W is continuous.
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(b) The differential of the representation nK of K equals the restriction

of the Lie algebra representation 7rB to I.

(c) For any k e K, X e g, and v e V

it9(Ad(k)X)v = 7tK(k)it9(X)7tK(k-[)v.

Then (it, V) is called a (g, K)-module. An irreducible (g, K)-module is a

(g, A^)-module which has no nontrivial subspaces invariant both for actions

of K and g. Two (g, A>modules (it', V) and (it", V") are equivalent if

there is a one-to-one linear mapping <p from V onto V" such that tpn'K(k) =

7t'^(k)<p and çj7rg(X) = 7Tg(X)çj for any k e K and leg. Now G is in a

natural bijection with the set of all equivalence classes of irreducible (g, K)-

modules. If (it, H) is an irreducible continuous representation of G (with

finite A"-multiplicities, which we always assume), then one takes for V the

space of all AMinite vectors in H. The formula (L.A.) defines an action of g

on V, and V becomes an irreducible (g, A")-module in this way.

Suppose now that F is nonarchimedean. A representation (n, V) of G is

called smooth if for each v e V there is an open subgroup Kv of G such that

it(k)v = v for any k e Kv . Again we say that smooth representation (n, V) is

irreducible if there is no nontrivial vector subspace invariant for the action of G.

Two smooth representations (itx, Vx) and (712, V2) of G are equi valent if there

exists a one-to-one linear map <p from Vx onto Vi suchthat iti(g)<p = <pitx(g)

for any g e G. As before, there is a natural one-to-one correspondence from

G onto the set of all equivalence classes of irreducible smooth representations

of G. If (it, H) is an irreducible continuous representation of G, one takes

again for V the space of all AMinite vectors v in H. Now the restriction of

the action of G on H to V defines an irreducible smooth representation of

G on V.

3. Some simple constructions of unitary representations

One would like to have rather simple and natural constructions of unitary

representations which produce the whole of G. For nilpotent Lie groups such a

systematic procedure consists of unitary induction by one-dimensional unitary

representations. For the groups we consider, the situation is not so simple, but

it is not too bad either. For example, one obtains the whole of SL(«, C)" by

parabolic induction with one-dimensional, in general nonunitary, representa-

tions (see §9).

We have introduced the topology of G in §1. In the construction of new uni-

tary representations, the hardest problem is to find new connected components

of G. Since G is not topologically homogeneous, there may exist special con-

nected components, those consisting of only one point. These representations

are usually called isolated representations. To avoid the influence of the com-
mutative harmonic analysis coming from Gab = G/GdeT where Gder denotes

the derived group of G, we shall define the notion of representations isolated

modulo center. Let Z(G) be the center of G. For (it, H) e G there exists

a character œn e Z(G)~ such that it(z) = con(z) idn for all z e Z(G). The

character œn is called the central character of it. For a character w e Z(G)~
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set

Go, = {it e G ; œn - oí)   and   Gœ = Gw n G.

The representation it e G (resp. it e G) will be called isolated modulo center
(resp. isolated modulo center in the nonunitary dual) if {it} is an open subset

of Gai, (resp. an open subset of G^). In the sequel, by isolated representation

we shall mean isolated modulo center. According to what we have said about

the topology of G, we may say roughly that matrix coefficients of isolated rep-

resentations are not similar to other matrix coefficients of elements of G. The
following example indicates that. If G is compact, then G is discrete, and ma-

trix coefficients of different representations are L2-orthogonal. Kazhdan proved
in [Ka] that the trivial representation is isolated when G is a simple group of

split rank n>2. The split rank is the highest n such that G possesses a Zariski
closed subgroup defined over F which is isomorphic over F to GL(1, F)n .

As opposed to the trivial representation, other isolated representations are usu-

ally not easily constructible. In fact, isolated representations of G or G are

very distinguished representations in known examples. Certainly, each isolated

representation in the nonunitary dual, which is unitary, is also isolated in the
unitary dual.

The first isolated representations that one usually meets in the representation

theory of reductive groups are square integrable. An irreducible unitary rep-

resentation (it, H) of G is called square integrable modulo center if for any

v, w e H, the function

g* \(n(g)v, w)\

is a square integrable function on G/Z(G) with respect to a Haar measure.
We shall use the term square integrable instead of square integrable modulo

center. Actually, the unitarity of some (it, H) e G may be obtained from
the above square integrability condition (note that the unitarity of the central
character of it must be assumed to be able to formulate the above square
integrability condition). The square integrable representations are crucial for

Plancherel measure and important for parametrizing the nonunitary dual. In
known examples, they are very often isolated (in the unitary dual).

The known examples show that the construction of a connected component,
or at least a big part of it, reduces to the construction of isolated representations

of reductive subgroups of G attached to parabolic subgroups and some standard
simple and well-known constructions. Now we shall recall these standard simple
constructions. The first and the oldest one is:

(a) Unitary parabolic induction. Let P = MN be a Levi decomposition of a
parabolic subgroup P of G. For a continuous representation a of M, we have
considered a also as a representation of P using the projection P — MN —►

P/N s M. Then lndp(a) was called a parabolically induced representation

of G. If a is a unitary representation, then this process will be called unitary

parabolic induction. In fact, we always take a e M. Then Ind£(er) is a unitary

representation which is a direct sum of finitely many irreducible representations.
It is usually irreducible. In the construction (a), we shall always assume that P

is a proper subgroup of G. In general, if (   ,   ) is an M-invariant hermitian
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form on the representation space U of a , then

(/i,/2)~ ¡(fx(k),fi(k))dpK(k)
Jk

is a G-invariant hermitian form on lndp(a), and it is positive definite if the

form on U was positive definite.

Unitary parabolic induction has been used since the first classification of the

unitary duals of reductive groups [Bg], [GfNl]. Gelfand and Naimark started to

use systematically unitary parabolic induction for the classical simple complex

groups, while Harish-Chandra started a systematic study of this induction.

The following construction was used also in the first classifications of unitary

duals of reductive groups [Bg, GfNl].

(b) Complementary series. It happens that some representations induced by

nonunitary ones become unitary after a new inner product is introduced on

the representation space. The idea is the following. One realizes on the same

space a "continuous" family (ita , Ha), a e X, of irreducible induced repre-

sentations which possess G-invariant nontrivial hermitian forms. Let X be

connected. Suppose that some ita is unitary. The fact that a continuous family

of nondegenerate hermitian forms on a finite-dimensional space parametrized

by X, being positive definite at one point of X, must be positive definite ev-

erywhere enables one to conclude that all constructed representations are in G

(here one reduces arguments to finite-dimensional spaces by considering spaces

0/f(<5), where ô runs over fixed finite subsets of A"). Positivity at one point

is obtained in general from (a). The delicate point is the construction of a con-

tinuous family of G-invariant hermitian forms, and it is based on the theory of

intertwining operators for induced representations.

For the above construction some authors use the term deformation [Vo4]. We

have chosen rather a more traditional name.

Let us recall that a topological space X is quasi-compact if each open cover-

ing of X contains a finite open subcovering. Note that in the above definition of

a quasi-compact topological space, the Hausdorff property is not required (this

is the difference between quasi-compactness and compactness). A topological

space is locally quasi-compact if each point has a fundamental set of neighbor-

hoods which are quasi-compact. The fundamental fact about the topology of G

(actually, about the dual of any C*-algebra) is local quasi-compactness. This

fact essentially, together with some understanding of the topology of the unitary

dual, implies that G cannot be complete without

(c) Irreducible subquotients of ends of complementary series. This fact was first

observed and proved by Milicic. Before we give a brief argument why the rep-

resentations in (c) must be included in G, we shall give a simple but suggestive

example.

Let F be a minimal parabolic subgroup in G = GL(2, F) (one may take for

P the upper triangular matrices in G). We have denoted by A/> the modular
character of P. Representations

/a = Ind£(A£), -l/2<a<l/2

are irreducible. If a = 0, then Io is unitary by (a) (A^ is the trivial repre-

sentation, so it is unitary). The family Ia , -1/2 < a < 1/2, is a "continuous"
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family of irreducible representations with nondegenerate G-invariant hermitian

forms. Thus, they belong to G by (b).
We shall pay attention now to the representation at the end of these comple-

mentary series l~xl2 = Indp(A^1/2). From the definition of 7_1/2, it follows

that the trivial representation of G is a subrepresentation of 7-1/2 (the trivial
representation of some group G is a representation on a one-dimensional space

V where each element acts as the identity on V). This is the unique proper

nontrivial subrepresentation of I~l/2. Since I~i/2 is infinite dimensional, there
is no inner product on I~1/2 for which 7-1/2 is a unitary representation (in

a unitary representation for each subrepresentation there is another subrepre-

sentation on the orthogonal complement). Nevertheless, the representation on

the quotient of I~xl2 by the trivial representation is unitary (actually, it is

square integrable, and this implies that it is unitary). So, though l~xl2 is not

unitary, each irreducible subquotient of the representation at the end of the

complementary series is unitary. This is the case in general.
The representation I~l/2 from the above considerations is a representation

which is not irreducible, but also, it is not very far from being irreducible. This

is an example of a representation of finite length. Before we proceed further

with explanation of the construction (c), we shall recall the definition of a rep-
resentation of finite length. Suppose that we have a continuous representation

(it, H) of a reductive group G, which has finite AMnultiplicities. Then we say

that it is of finite length if there exist subrepresentations

{0} = H0 ç Hx c ■ ■ . c Hn = H

of H, such that the quotient representations of G on H¡/H¡-i are irreducible

representations of G, for i = 1, 2,... , n . Parabolic induction carries the con-
tinuous representations of M of finite length to the continuous representations

of G of finite length.
Now we shall give a brief argument for the unitarity of representations in

(c). We shall omit technical details. Suppose that we have a complementary
series of representations ita, a e X. We may consider the following situation.

Let y be a topological space with a countable basis of open sets, and let X

be a dense subset of Y. Assume that to each a G y is attached a nontrivial
continuous representation na of G of finite length such that the functions

are continuous, for all q> from the space CC^(G) of all continuous compactly

supported functions which span a finite-dimensional space after translations by

elements of K (left and right). Suppose also that the ita are irreducible unitary

representations for all a e X. Take any a e Y. Let (a„) be a sequence in X

converging to a. Milicic proved that in general a sequence (it„) in G has no

accumulation points if and only if lim „ &„„((p) = 0 for all <p [Mi, Corollary of

Theorem 6]. Since S„a ^ 0, (itan) has a convergent subsequence. If S is the

set of all limits of subsequences of (nan) in G, then Milicic's description of

the topology of G says that there exist positive integers na , a e S, such that

lim„ GKan(q>) = J2   naQa(<p)
aeS
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for all <p in CC,*(G) [Mi, Theorems 6 and 7]. Also, S is a discrete and closed

subset of G. Thus

®na(<P) = ¿Z    n°®o((P)
aeS

for all q> in CC,*(G). Since the character of na is the sum of characters of its

irreducible subquotients, one can obtain easily that S is precisely the set of all

irreducible subquotients of ita . Since S ç G, each irreducible subquotient of

ita is unitary. Thus (c) provides unitary classes.

For a direct proof without use of the topology, one may consult [Td5]. The

proof is based on the fact that a group of unitary operators on finite-dimensional

Hubert space is finite dimensional. One uses in the proof the fact that reductive
groups have large compact subgroups.

While the constructions of (a) and (b) provide bigger continuous families of

unitary representations, (c) provides smaller families, but they are often impor-

tant in the construction of unitary representations. Representations obtained

by constructions (a), (b), or (c) are never isolated. We shall describe now a sim-

ple construction found by Speh that may produce isolated representations. This

construction is particularly useful when it is combined with some other construc-

tions, for example, with (a), (b), and (c). Contrary to previous constructions,

here one gets unitarity of representations of smaller groups from unitarity of

representations of bigger groups. Before we describe the construction, we need

a notion of hermitian contragradient.

For a continuous representation (it, H) of G, ñ will denote the complex

conjugate of n . It is the same representation, but the Hubert space is the com-

plex conjugate of H. The contragradient representation of it will be denoted

by 7T. It is the representation on the space of all continuous linear forms on

H with the action [ñ(g)f](v) = f(n(g~l)v). Set it+ = n. Then it+ will be
called hermitian contragradient of it. A continuous irreducible representation

it will be called hermitian if it and it+ are in the same class in G. It is easy

to see that all unitary representations are hermitian. In the classifications of G

it is usually easy to check whether n is hermitian or not.

Let P = MN be a proper parabolic subgroup of G. It is very easy to prove

the following fact:

(d) Unitary parabolic reduction. If we have hermitian a e M suchthat lndp(a)

is irreducible and that its class in G is unitarizable, then the class of a is

unitarizable too.
We shall now give a rough argument explaining why (d) provides unitarizable

representations. Let (a, H) be an irreducible nonunitarizable hermitian repre-

sentation of M. Then there is a nondegenerate M -invariant hermitian form y/

on H. Now H decomposes H = //+©//_ as a representation of A^nP, where
y/ is positive definite on H+ and negative definite on //_ . Clearly, H+ ^ {0}

and H- ^ {0}. Note that Ind^(cr) and Indf nP(a\K n P) are isomorphic as

representations of K and

Ind*n/,(<7|A-nP) S Ind£n/,(//+)©Ind*n/>(//_).

Since unitary induction carries unitary representations to unitary, we see that
the hermitian form induced by y/ is indefinite. This form is also G-invariant.
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Since a G-invariant hermitian form on an irreducible representation is unique

up to a scalar, we see that if lndp(a) is irreducible, then it is not unitarizable.

Roughly speaking, the construction (d) enables one to construct sometimes

from a component of Mx a component of M2, where P¡ = M¡Ni are two

parabolic subgroups of G.

There are also some simple constructions based on the geometry of a group

or groups. For example, if a¡ e G¡, then ax ® a2 € (Gx x Gi)~ (and conversely).

There are also irreducible unitary representations which appear already in the

classification of the nonunitary dual—the square integrable ones.

It is interesting to ask which constructions must be added to (a)-(d) to gener-

ate the whole unitary dual of the classical groups, starting with square integrable

representations. We shall see that for the first class, the case of GL(« , F), the
constructions (a)-(d) are enough.

Remarks. ( 1 ) Fell introduced in [Fe] a notion of nonunitary dual space for ar-

bitrary locally compact group. It is a topological space consisting of so-called

linear system representations. We have studied G as a topological space in

[Td6] if G is a reductive group over a nonarchimedean field F. It was shown

that G coincides with Fell's nonunitary dual. The set G is a closed subset

of G. A representation it e G is isolated modulo center if and only if there

is a nontrivial matrix coefficient which is compactly supported modulo center.
Therefore, one may interpret Jacquet's subrepresentation theorem [Cs, Theo-

rem 5.1.2] in the following way. Each element of G can be obtained as a

subrepresentation of Ind^(cr), with a isolated modulo center representation

of M for some parabolic subgroup P = MN of G. Each isolated modulo

center representation of G in G is essentially unitary (i.e., it becomes unitary

after twisting by a suitable character of G) ; actually it is essentially square in-

tegrable. Certainly, all these facts about the topology of the nonunitary dual

should hold over archimedean fields with the proofs along the same lines. In

the archimedean case, the representations with matrix coefficients compactly

supported modulo center can exist only if G/Z(G) is compact. Construction

of representations of such groups is essentially solved by the case of compact
Lie groups.

(2) Suppose that F is nonarchimedean. Let P = MN be a parabolic sub-

group in G. Let a e M be isolated modulo center. Denote by °G the set
of all g e G such that the absolute value of p(g) is one for any homomor-

phism p : G —► Fx which is also a morphism of algebraic varieties defined

over F. Then a character ^:G-»CX is called unramified if x is trivial on

°G, i.e., if x(°G) = {1} . Let U(M) be the set of all unramified characters of

M. Then U(M)a - {xa; x £ U(M)} is a connected component of M con-
taining a , and the set of all irreducible subquotients of Ind'f(x), t e U(M)a ,

is a connected component of G. All connected components of G are ob-

tained in this way [Td6]. So, for G the set of connected components reduces

to the set of isolated representations modulo center in the nonunitary dual of

the reductive parts of parabolic subgroups. Note that a difficult problem in

the nonarchimedean case is the construction of representations isolated modulo
center (i.e., of supercuspidal representations).
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4. Completeness argument

In the last section, we have outlined constructions (a)-(d) of unitary repre-

sentations of a reductive group G. It seems that those constructions provide

a remarkable part of the unitary duals of the classical groups. This leads to

one of the most interesting questions about unitary representations of reductive

groups: How can one conclude that a set J ç G is a significant piece of G, or

even all of it? At the present time there is no satisfactory strategy for answering

such density questions. Recall the simple answer for finite groups: One needs

to check if the sum of squares of degrees of representations in X is equal to

the order of the group or not.

Suppose that a set J ç G is constructed and suppose also that one expects

that it is the whole unitary dual. If one wants to prove that, then a usual strat-

egy has been to prove that in G\X all representations are nonunitarizable. One

checks for each representation in G\X that it cannot be unitarizable consider-

ing various properties of that representation. The simplest properties that one

can consider are: if the representation is hermitian, if it has bounded matrix

coefficients, etc. The construction (d) can be used also for getting nonunitar-

ity (from M to G). The above strategy we shall call the indirect strategy (of

proving completeness of a given set of unitary representations).

The indirect strategy becomes less satisfactory for groups of larger size. At

the same time, the indirect strategy is not completely satisfactory from the point

of view of harmonic analysis: the stress is not on unitary representations, which

are of the principal interest, but on nonunitary ones. Actually, one needs a very

detailed knowledge of the structure of representations in G\G, and the set G\G

is usually much, much larger than the set G. The indirect strategy does not

develop directly the intuition about unitary representations. In dealing with G,

it is very useful to algebracize the situation (the algebraic description of G was

presented in the appendix at the end of §2).

Later on we shall present a completeness argument for GL(«), dealing si-

multaneously with all GL(«) and having only one argument rather than various

cases. This will be an example of the direct strategy of proving completeness.

In the following section we shall explain the sense in which the set of repre-

sentations of Gelfand, Naimark, and Stein is "big".

5. On the completeness argument: the example of Gh(n, C)

We shall first introduce some general notation for the general linear group

and then pass to the complex case.

In the first part of this section, F denotes any local field.

For x e Fx , there exists a number \x\f > 0 such that

\x\f j f(xg) da(g) = J f(g) da(g)

for all / e CC(G) (dz(g) denotes an additive invariant measure on F). Set

|0|f = 0. Then | \F is called the modulus of F. Note that | |R is the usual
absolute value on R, | |c is the square of the usual absolute value on C (i.e.,

|z|c = zz), while \x\q_p = \x\p (see the Introduction). For g e GL(n, F) set

u(g) = \det(g)\F.
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Clearly, v : GL(n, F) -» R* is a character.

For nx,n2 e 1+, we have denoted by F(Wl „2) the parabolic subgroup of

GL(«! + «2, F) consisting of the elements g - (g¡j) for which g¡j - 0 when

i > «i and j <nx. Also we have denoted M(„, >nz) = {(gu) e F(„, ,„2) ; g¡j =

0 for j > nx and z < nx} . Then

M(n,,„2)SGL(«1,F)xGL(«2,F)

is a Levi factor of F(n, ,„2).

For two continuous representations t, of GL(n, ; F), / = 1, 2, we consider

Ti <g> xi as a representation of M(„x¡n2) S GL(«i, F) x GL(«2, F) in a natural

way. The mapping mn >-» (ti ® t2)(m), where m e A/(ni „2) and « € N(„lt„2),

defines a representation of F(n,,«2) • This representation of P(ni,n2) was again

denoted by xx ® t2 . Thus

Ti ® T2 :
£i     *

0    ft
TlUl)®T2(g2)

for gx e GL(«i, F) and gi e GL(ni,F). Now the parabolically induced
representation

IndGL(„+„2,F)( }

will be denoted by Ti x xi . It is a standard fact that (ti x x2) x T3 is isomorphic

to Ti x (i2 x T3) (i.e., there exists a continuous intertwining which is invertible).

This is a consequence of a general theorem on induction in stages

Ind^(Ind^(a))^Ind^(a).

Therefore, it makes sense to write xx x x2 x t3 .

Before we explain an important property of the operation x , we need the

notion of associate parabolic subgroups and associate representations. Suppose

that we have two parabolic subgroups Px and P2 of some reductive group G.

If we have Levi decompositions Pi = MXNX , P2 = M2N2, and w e G such
that M2 = wMxw~l, then we say that Pi and P2 are associate parabolic sub-

groups. Suppose that ax and a2 are finite length continuous representations of

Mx and M2 respectively, such that a2(m2) = ax(w~lm2w) for all m2e M2.

Then we say that ax and oi are associate representations. For a continuous

representation (it, H) of G of finite length, consider a sequence of subrepre-
sentations

{0} = H0 ç Hx ç ■ ■■ C Hk = H

of H where the quotient representations on Hj/Hj-X are irreducible repre-

sentations of G, for i = 1, 2, ... , k. Denote by R(G) a free Z-module

which has for a basis G. We shall denote by J.H.(7t) the formal sum of all

classes in G of the representations //,•////-1, i = 1, 2, ... , k. We shall con-

sider J.H.(7t) e R(G) and call it the Jordan-Holder series of it. The element
J.H.(ti) g R(G) does not depend on the filtration H¡, i = 0, 1, 2,..., k as
above (one can see that from the linear independence of characters of repre-

sentations in G). Suppose that Pi = MXNX and P2 = M2N2 are associate

parabolic subgroups. Let ax and #2 be associate representations of Mx and

Mi (as before, we consider ax and er2 as representations of Pi and Pi re-

spectively). A standard fact about parabolic induction from associate parabolic
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subgroups by associate representations is that representations lndp (ax ) and

lndf2(ai) have the same characters, which implies that these two representa-

tions have the same Jordan-Holder series. The formula for the character of a
parabolically induced representation from a minimal parabolic subgroup, when

F = R, is computed in [Wr, Theorem 5.5.3.1]. A similar formula holds with-

out assumption on parabolic subgroup. In the nonarchimedean case we have a
similar situation.

Suppose that xx and Xi are continuous representations of finite length of

GL(«, F) and GL(w, F) respectively. The above fact about induction from

associated parabolic subgroups by associate representations implies that xx x x2

and x2 x xx have the same Jordan-Holder series.

Set Irr" = {Jn>0GL(n, F)~. To solve the unitarizability problem for the

GL(n, F)-groups, one needs to determine Irr" .

In the rest of this section we shall assume F = C. Recall that | |c is the

square of the standard absolute value that we usually consider on C.

Let xo '■ C* -* Cx be the character x i-> x\x\^ . Since each n e

GL(«, C)" has a central character and GL(«, C) is a product of the center and

of SL(«, C), the restriction of representations from GL(«, C) to SL(n, C)

gives a one-to-one mapping of

GL(« , C)'Xo U GL(«, cyKi U • • • U GL(« , C)\n

onto SL(«, C)". Therefore, in order to understand SL(«, C)~ it is enough to

understand GL(«, C)" (and conversely). In the rest of this paper we shall deal

only with GL-groups and interpret the Gelfand, Naimark, and Stein represen-

tations in terms of GL(«).

The first obvious irreducible unitary representations of GL(«, C)" are one-

dimensional representations #odet„ where x is a unitary character of Cx and

where det„ denotes the determinant homomorphism of GL(«). Gelfand and

Naimark obtained also the following series of irreducible unitary representations

(u-aX) x (vaX) = [v~a(X « det)] x [va(X ° det)],        x G (Cx )*,  0 < a < \ ,

the complementary series representations for GL(2, C). These complementary
series start from representations

X *X = (X°det) x Qt o det),        X G (Cx)~.

The following unitary representations of GL(«, C) will be obtained by para-

bolic induction using the above representations. Gelfand and Naimark showed

in [GfN2] that the unitary representations obtained by parabolic induction us-

ing the representations above are irreducible. They assumed that in this way one

gets all irreducible unitary representations of GL(n, C), up to unitary equiva-
lence.

We can interpret the above remarks in the following way. Set

50 = {/odet, [i/-a(^odet)]x[i/0(Zodet)]; *G(Cxr, «eN, 0<a<i}.
nil z

Gelfand and Naimark showed that for xx, ... , xk e Bq, the representations

ti x • ■ • x xk are in Irr" . Their assumption was that in this way one can get any
representation from Irr".
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Stein showed that the Gelfand and Naimark complementary series represen-

tations for GL(2, C) are just the first of the complementary series representa-

tions which exist for all GL(2«, C) [St]. He showed that

[v~a(x o det)] x [va(x o det)] e Irr"
n n

also for « > 2, 0 < a < 1/2, #G(CX)~, and he showed that these representa-

tions were not obtained by Gelfand and Naimark. These complementary series
start from representations

(X o det) x (x o det),        n>2, * G (CX)\
n n

which were already well known to Gelfand and Naimark.

Now it is natural to complete the Gelfand and Naimark list by the Stein

complementary series representations. Therefore, put

B = {x o det, [z/_a(^odet)]x[i/a(^odet)]; * G (Cx)\ neN, 0<a<±}
n n n

(i.e., B is just Bq completed by the Stein complementary series representa-

tions). Now using arguments similar to those of Gelfand and Naimark, one

may conclude that for ti, ... , xk e B the representations xx x ■■ ■ x xk are in

Irr" (see [Sh]). Let us denote by {G.N.S.} the set of all representations obtain-
able in this way.

We can explain now in what sense {G.N.S.} is big in Irr" . It is easy to prove

the following fact (and we shall prove it later):

(D) For any it e Irr", there exist xx, x2 e {G.N.S.} such that it x t, and x2

have a composition factor in common.

It is clear that (D) plays a role in the completeness argument.

Regarding unitary parabolic induction for GL(«, C), the simplest situation

would be if it were always irreducible. This is what Gelfand and Naimark

expected to hold in 1950:

(51) Unitary parabolic induction for GL(n,C) is irreducible, i.e.,

T], T2 G Irr"     implies     X\ xx2e Irr".

Let us suppose that (SI) holds. Because of (SI) and (D), for each it e Irr"

there exist xx, x2 e {G.N.S.} such that it x xx = x2. Thus, to obtain Irr",

it is enough to know how representations from {G.N.S.} can be parabolically
induced.

We shall call it e G primitive if there is no proper parabolic subgroup P =

MN and a e M so that it = Ind^(tr). Certainly, each it e G is unitarily

equivalent to some lndp(a) where a e M is primitive. We have mentioned

that if Pi and P2 are associate parabolic subgroups and ax, a2 associate

representations, then lndft(ax) and Ind£2(ö2) have the same Jordan-Holder

series. The simplest situation would be if the converse were true for ax and a2

primitive (because of the induction in stages, it is necessary to assume that ax

and a2 are primitive). For GL(«, C) this would mean (having (SI) in mind):

(52) // both families t, g GL(/j, , C)", /' = 1, ... ,n, and aj e GL(wy, C)",
j = I, ... , m,  consist of primitive representations, and if

xx x ■ ■ ■ x x„ = ax x ■ ■ ■ x a,
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then m — n, and after a renumeration, the sequences (xx, ... , x„) and (ax, ...

... , am) are equal (all «,, m¿ are assumed to be > 1).

We shall assume that this holds.
A very plausible hypothesis is:

(S3)   The Stein representations

[i/-^* o det)] x [!/*(* o det)];        *G(Cxr,  «eN, 0 < a < ]-,
n n L

are primitive.

Certainly, if we assume (S3), then all elements of B are primitive. Now it is

obvious that (D), together with (SI), (S2), and (S3), implies

Irr" = {G.N.S.}.

It remains to find a way to prove (SI ), (S2), and (S3). Note that until now only

(classes of) unitary representations were necessary, and statements (SI), (S2),

and (S3) are essentially analytic. So, if one could prove (D), (SI), (S2), and

(S3) dealing only with unitary representations, one would have a classification

of GL(w, C)" completely in terms of unitary representations.
As we shall see, (D) is easy to prove using noncomplicated parts of the nonuni-

tary theory. The following strategy for proving (S2) and (S3) simultaneously

can be used. The set Irr" can be embedded in a suitable ring which is factorial
and where multiplication corresponds to parabolic induction. Then one can

prove that elements of B are prime or close to being prime. This would imply
(S2) and (S3). This strategy would also include nonunitary theory (but again,

not the complicated parts).

Finally, we leave the discussion about (SI) for §9. Let us say that the first

ideas for proving (SI) are due to Gelfand, Naimark, and Kirillov.

In the following sections we shall elaborate in more detail the above strategy

and outline such a strategy for GL(«) over general local field F .

6. The nonunitary dual of GL(«, F)

In this section, we state some basic facts about a parametrization of
GL(«, F)~.

Besides Irr" which was introduced in the previous section, we introduce

Irr = (J GL(/i, F)~.
n>0

The set of all classes of square integrable representations in Irr" of all

GL(n, F), n > 1, will be denoted by Du. The set of all essentially square

integrable representations will be denoted by D. More precisely,

D = {(Xodet)ô; XeGL(l,F)~,   S e />"}.

For a set X, M(X) will denote the set of all finite multisets in X. These are all

unordered n-tuples, n e Z+ . This is an additive semigroup for the operation

(ax, ... ,an) + (bx, ... ,bm) = (ax, ... ,an,bx, ... , bm).

By WF we shall denote the Weil group of F if F is archimedean and the

Weil-Deligne group in the nonarchimedean case. For the purposes of this paper,
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it will not be essential to know exactly the definition of Wp . We denote by /

the set of all classes of irreducible finite-dimensional representations of WF .

By the local Langlands conjecture for GL(«) (which generalizes local class field
theory), there should exist a natural one-to-one mapping of Irr onto classes of

semisimple representations of Wp , i.e., onto M (I)

Irr -♦ M(I).

Under such a mapping, D should correspond to /. Thus, there should exist a

parametrization of Irr by M(D). Let us write one such parametrization.

Let a = (ôx, ... ,ô„)e M(D). We can write

ôi = ve^ôf,       e(ô,)eR, ô» eDu.

After a renumeration, we may assume e(Sx) > e(ô2) > ■■■ > e(S„). The repre-

sentation

À(a) = ôx x ■• ■ x ô„

has a unique irreducible quotient (possibly X(a) itself), whose class depends

only on a [BIWh, Jcl]. Its multiplicity in X(a) is 1. We shall denote this class

by L(a). Now
a ~ L(a), M(D) -+ Irr

is a one-to-one mapping onto Irr. It is a version of the Langlands parametri-

zation of the nonunitary duals of GL(«)-groups. Certainly, for the existence

of such a parametrization, it is crucial that the parabolic induction by square

integrable representations is irreducible for GL(«).

The formula for the hermitian contragradient in the Langlands classification

becomes

L((ôx,... ,ôn))+ = L((ô+,... ,<5„+)).

If we write <?, = ve^of(e(S¡) e R,   öf e Du), then

S+ = (ve^ôf)+ = v~e^ôf.

Also, it is easy to show that

vaL((ôx, ... , ôn)) » L{{vaSy,... , vaôn)), a G C.

Let R„ be the free abelian group with basis GL(«, F)~ , i.e., Rn =

R(GL(n, F)). For each finite-length continuous representation it of GL(«, F),

we have denoted by J.H.(7r) its Jordan-Holder series which is an element of
R„ . Set

* = 0FV
n>0

Now R is a graded additive group which is free over Irr. Let

Rn x Rm ~* Rn+m

be the Z-bilinear mapping defined on the basis Irr by

(a, x) i-> J.H.(er x t).

This defines a multiplication on R, which will be denoted again by x . We

have mentioned in the previous section that x x a and a x x have the same

Jordan-Holder sequences. This just means the commutativity of R. Since

(ti x x2) x T3 = Ti x (xi x T3) (§5), R is also associative. Certainly, {L(a) ;   a e
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M(D)} is a basis of R. It is a standard fact that {X(a); a e M(D)} is a
basis of R (i.e., standard characters form a basis of the group of all virtual

characters). This means nothing else than the following fact which was first
noticed by Zelevinsky in the nonarchimedean case [Ze, Corollary 7.5].

6.1. Proposition. The ring R is a 1-polynomial algebra over all essentially

square integrable representations (i.e., over D).

In particular, R is a factorial ring.
It is a natural question to ask if it is possible to relate the operation of

summing representations of Wp with some operation on representations from

Irr in the correspondence a i-> L(a) ; i.e., is there a relation between L(a + b)

and representations L(a), L(b) ? The answer is very nice: L(a + b) is always a

subquotient of L(a) x L(b).
One may find more information about the Langlands classification on the

level of general reductive groups in [BIWh]. For the Langlands philosophy one
may consult [Gb3].

7. Heuristic construction

In this section we shall try to see what would be the part of the unitary

dual for the GL(n)-groups over arbitrary local field F , generated by classical

constructions (a)-(d) of §3. Our principle will be to expect a situation as simple
as we could assume, bearing our evidence in mind.

So, let us start with D" . The representation ô x ô is irreducible, so ô x S e

Irr" by the construction (a). Then we have the complementary series which
starts from S x S :

[vaS]x[v-aô],        0<a<l/2.

This is an example of construction (b). We require a < 1/2 to ensure that
the induced representation is irreducible. At the end of complementary series
[vaô] x [v~aS], there will be unitary irreducible subquotients. To be able to

identify at least one, let us recall the relation mentioned at the end of §6; namely,

L(a + b) is a subquotient of L(a) x L(b) for a, b e M(D).

We shall assume that this holds in the rest of this section. Therefore, we have
that L((vxl26, v~xl2S)) is unitary since it is at the end of the above comple-

mentary series (construction (c)).
To proceed further, in order to be able to form a new complementary series,

let us suppose that for general linear groups unitary parabolic induction is ir-
reducible. Then one has L((vxl2S, i/-'/2r5)) x L((vxl2S, v~xl2ô)) e Irr", and

further, one has a new complementary series

[vaL((vxl2ô, i/"1/2á))] x [u-aL((vxl2ô , v~l/2ô))] ,   0 < q < 1/2.

At the end of this complementary series

[ux'2L((ux'2S, i/-1/2<?))] x [v-xl2L((vxl2ô, v~xl2Ô))\

= L((vô,ô))xL((ô,v~xô))

is the unitary subquotient

L((vô,ô,u-Xô,ô))
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by the assumption that L(a + b) is a subquotient of L(a) x L(b). It is natural

to ask if the above representation is primitive. But L((vô, S, u~xô, â)) is a

subquotient of
L((vô,ô,v-xô))xL((ô)).

Note that L((vô, ô, v~xô)) ® L((ô)) is hermitian. If we take the simplest

possibility, that is, L((vô, ô, v~xô))xL((ô)) irreducible, then the construction

(d) implies that
L((vô,ô,v-XÔ))®L((Ô))

is unitary. Clearly then, L((vö, ö, v~xô)) e Irr" .

At this point it is convenient to introduce some notation. Set

a(y,n) = (v("-»)/*y, ^"-^2y, ... , i/-("-U/27)

for y eD and n e Z+ and

u(y, n) = L(a(y, n)).

We shall write
ua(ôx,... ,ôn) = (vaôx,... ,v°ôn).

Now we proceed further. We already have u(ô, 1), u(S, 2), u(5, 3) G Irr" .

One considers a complementary series

[v"u(S, 3)] x [v~au(ô, 3)],   0 < a < 1/2,

which starts from u(S, 3) x u(S, 3). At the end we have the representation

L(vx'2a(ô,?>)) x L(v-Xl2a(5, 3)),

and we can identify one irreducible subquotient which is

L(vxl2a(8, 3) + p-l'2a(ô, 3)).

It is a unitary subquotient by (c). Note that

vxl2a(6, 3) + v-xl2a(ô, 3) - a(S, 4) + a(S, 2)

which means that L(a(ô, 4) + a(S, 2)) is unitary. Further, this representation

is a subquotient of

u(S, 4) x u(ô, 2) = L(a(ô, 4)) x L(a(ô, 2)).

Suppose again that u(ô, 4)xu(ô, 2) is irreducible. Since it is unitary, u(6, 4)®

u(ô, 2) needs to be unitary by the construction (d). Therefore, u(S, 4) will be

unitary.

Now it is easy to conclude that the assumption

u(ô, n) x u(ô, n - 2) e Irr

leads to
u(ô, n) e Irr".

In the case of GL(«,C),   D"  is equal to  GL(1,Q" =  (Cx)\    Then
u(ô, n) - ô o det„ .   So, we have not obtained new unitary representations
in this case.

8. Scheme of unitarity for GL(«)

In the last section we have seen heuristically what some simple assumptions

suggest. Now we shall write down some of those assumptions and their "impli-
cations". We first recall that

u(S, n) = L(a(ô, «)) - L((u<~n-X^2ô, u{"-3)/2ö,... , p-^-Wô))



244 MARKO TADIC

for ô G D and n > 1 . It was also observed in §6 that F is a factorial ring.

We introduce the following statements:

(UO) x, a e Irr" =¡> x x a e Irr.

(Ul) ôeD",   neN => u(ô,n)e\rr".
(U2) ôeD",   neN,   0<a< 1/2 => [vau(ô , n)] x [v~au(ô, n)] ehr" .

(U3) ôeD,   n G N => m(<5 , «) is a prime element of R.
(U4) a, b e M(D) => L(a + 6) is a composition factor of L(a) x L(b).

Here only (U3) was not assumed or obtained in the last section. It is a

strengthening of the assumption that the u(ô, n) 's are primitive, which was

present in the last section (otherwise, we would have tried to construct new

unitary representations in that way).

We have seen that (UO) and (U4) lead to (Ul) and (U2) (i.e., unitarity of the
representations mentioned there). But it is interesting and surprising that with

the addition of only one assumption, namely, (U3), the preceding assumptions

also easily imply completeness for the unitary duals of the groups GL(« , F).

8.1. Proposition. Suppose that (U0)-(U4) hold true. Set

B = {u(ô,n),   [uau(ô,n)]x[u~au(ô,n)],   ÔeD",   neN,   0<a<¿}.

Then:

(i) if xx, ... , xk e B, we have xx x • • • x xk G Irr" ;

(ii) if it e Irr", then there exist ax, ... , am e B such that

it = ax x ■ ■ ■ x am ;

(iii) ifax, ... ,ak, xx, ... , xm e B and ax x ■ ■ ■ x ak = xx x ■ ■ ■ x xm , then

k = m and the sequences ax, ... , ak and xx, ... , xm coincide after a
renumeration.

From (UO), (Ul), and (U2) one obtains (i) directly. Also (U3) implies (iii).
It remains to prove only (ii). First we shall prove

8.2. Lemma. Suppose that it e Irr is hermitian. If(U4) holds, then there exist

ax, ... , an, xx, ... , xm e B such that it x ax x ■■ ■ x an and xx x ■ ■ ■ x xm

have a composition factor in common.

Proof. Let ô e D",   k e (1/2) Z+ , and 0 < ß < 1/2. Then

(v~kô,vkô) + a(ô,2k- \) = a(ô,2k+\),        k>0,

and

(¡/-Wo, vk+ßo) + vP-x'2a(ô, 2k) + uxl2~ßa(o, 2k)

= vßa(o, 2k + 1) + v~ßa(o, 2k + 1).

Let it e Irr be hermitian. Then it — L((yx, ... , ys)) for some y¡ e D . Now

L((yx,... ,ys))+ = L((yî,... , y+))

(see §6). This implies that we can write it in the form

it = L (f>-*'A, v*1*,) +  ¿ (u-k>-Ni, v^ôi) +   jr (3i)
\i=i 1=«1 + 1 ¡ = «2+1
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k„t > 0. Herewhere 0¡ e D", k¡e(l/2)Z+, 0 < ß{ < 1/2 and all kx, .
«i, «2, «3 G Z+ and «2 > "i, «3 > «2 (i-e-, not all three sums need to show

up in the above formula). The two relations at the beginning of the proof and
(U4) imply that both

it x f[u(Si, 2ki-l)
Li=l

"2

and

f[u(ôi,2ki + l)
L;=l

[ (vß'-x'2u(oi, 2k¡) x vl'2-"'u(Si, 2ki))

i=n¡ + l

«2

[ (vß>u(3i, 2ki + 1) x i/-A«(áf, 2fc¿ + 1))
i=nt + l

ri «(*,i)
i'=n2+l

have

Llj^aioi^ki+l)
i=i

«2 «3

+  J] (i/Afltf,, 2kf + 1) + i/-*a(<fc, 2ki + 1)) +   £ (¿,)
t=«2 + l¡=n\ + l

as a composition factor. This completes the proof of the lemma.   D

End of proof of Proposition 8.1. Let it e In" . Then, by the preceding lemma

there exist a¡, x¡■ e B so that it x ax x ■ ■ ■ x a„ and xx x ■ ■ ■ x xm have a

composition factor in common. Since (UO), (Ul), and (U2) imply that both
sides are irreducible, we have

it x ax x ■ ■ ■ x a„ = Ti x x xn

Since R is factorial and the u(ô, n) 's are prime by (U3), it is a product of
some u(ô, k) 's, ôeD. But the fact that it is hermitian implies that it is
actually a product of elements of B. So, we have proved (ii).   D

8.3. Remark. For GL(n) over a central simple division F-algebra, we expect

that a scheme of this type should work too. In that case a slight modification in

the definitions of the u(ô, n) 's and lengths of complementary series is necessary
(see [Td7]).

9. On proofs

We have seen that the fulfillment of (U0)-(U4) implies a complete solution

of the unitarizability problem for GL(«, F), as was described in Proposition
8.1.

Let us remark that (U0)-(U4) were expected to hold for F = C (except

maybe (U3) because such questions were not considered). Statements (Ul) and

(U2) were known, (UO) was expected even by Gelfand and Naimark, while (U4)

is easy to prove. A simple consequence of (U0)-(U4), namely, the description
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of the unitary dual of GL(«, C), was not generally expected to hold. Now we

shall make a few remarks on the history and proofs of (U0)-(U4).

We start with the statement (U4), which belongs to the theory of the nonuni-
tary dual. This fact was proved by Zelevinsky in the case of nonarchimedean

F for his classification of GL(«, F). His proof uses induction on Gelfand-

Kazhdan derivatives [Ze, Proposition 8.4]. Rodier noticed in [Ro] that Zelevin-

sky's proof implies (U4) for the Langlands classification in the nonarchimedean

case. We proved (U4) in a simple manner for the archimedean case [Td2, Propo-

sition 3.5. and 5.6]. Such a proof is outlined for nonarchimedean F in Remark

A.12(iii) of [Td3]. Sometimes one can conclude the equality in (U4), using the

Zelevinsky's proof of Proposition 8.5 in [Ze].

9.1.   Proposition. Let a¡ = (ô[, ... , Sn¡) e M(D),   i = 1, 2. If ôxk x ô2m e Irr

for ail 1 < k < nx and 1 < m < n2, then

L(ax) xL(a2) = L(ax +a2).

The above proposition may be helpful in constructing complementary series.

Let us now consider (Ul). Certainly if F = C, then there is nothing to

prove since as we already mentioned, D" = (Cx)~ and for x G D", u(x, n) =

X ° det„ .
For F = R, D" C GL(1, R)~ U GL(2, R)\ Again, (Ul) is evident if * G

(Rx )". Speh considered the remaining case of u(ô, n), ô e GL(2, R)~ n D"

[Sp2]. She proved unitarity using adelic methods. Surprisingly, it seems that

Gelfand and Graev were already aware of this series of representations in the

1950s (see [Sp2, Remark 1.2.2.] about [GfGr]).
For nonarchimedean F, we have determined in [Td3] the representations

u(ô, n) through the ideas presented in §7. Unitarizability is proved there
essentially along those lines. It is also possible to prove unitarizability by

the method of Speh as was done in the appendix of [Td3]. Note that here
Du n GL(« ,F)"¿0 for all n > 1.

For F - C, (U2) was proved by Stein in [St]. In general, (U2) follows
from (UO), using the irreducibility of representations uau(ô, n) x v~au(ô, n),

0 < a < 1/2, obtained from Proposition 9.1 and from the analytic properties

of intertwining operators. There is also another method in the nonarchimedean

case presented in [Bn2].

To prove (U3), one considers the u(ô, n) 's as polynomials and proves the

irreducibility of these polynomials. Here one uses the fact that F is a graded

ring and that u(ô, n) 's are homogeneous elements. In the proof, one uses

basic facts about the composition series of generalized principal series repre-
sentations (one does not need more detailed information, such as that obtained

from Kazhdan-Lusztig type multiplicity formulas). It is a bit surprising that,

although we do not know how to write down the polynomials u(ô, n), we can

nevertheless carry out the proof. For proofs of (U3) see [Td3] and [Td2]. The

statement (U3) is obvious for u(ô, 1) by Proposition 6.1.

Finally, let us return to (UO). Let P„ denote the subgroup of GL(«, F)

of all matrices with bottom row equal to (0, ... , 0, 1 ). Already Gelfand and
Naimark noticed the importance of the statement

(I) If it e GL(«, F)', then 7t|F„ is irreducible (neN).

Actually, they proved the above statement for F = C, for the representations



AN EXTERNAL APPROACH TO UNITARY REPRESENTATIONS 247

that they expected to exhaust the unitary dual of GL(n, C). Several people were

aware that the above statement implies (UO). For a written proof see [Sh]. Proof

of the implication is based on Mackey theory and Gelfand-Naimark models.
Kirillov stated (I) as a theorem in [Kil] for F an archimedean field. There he

sketched a proof. Vahutinskii's classification of representations of GL(3, R)"

was based on the proof. Having in mind a correspondence obtained by Mackey

theory

Pn -» GL(« - 1, F)" U GL(« - 2, F)' U • • ■

U GL(2, F)' U GL( 1, F)' U GL(0, F)~,

the statement (I) would imply that one would have simpler realizations for

representations from GL(«, F)'. It is from this setup that the name Kirillov

model appears. In [Kil] Kirillov's intention was to prove that 7t|P„ is operator

irreducible (i.e., the commutator consists only of scalars), which is enough by

Schur's lemma to see the irreducibility of 7r|F„ . One takes any T from the

commutator of it\Pn and considers a distribution

Ar : <p •-» Trace (Tit(<p))

on GL(«, F) which is invariant for conjugations with elements from Pn , since

T is P„-intertwining. Now if A7- is GL(«, F)-invariant, then using the irre-

ducibility of it, it is not difficult to obtain that T must be a scalar. Kirillov

indicated that he proved in [Kil] that A7- is GL(«, F)-invariant (however, see

below). This property of the distribution is especially easy to see when it is
a continuous finite-dimensional representation. Then the distribution A7- is

given by a continuous function which must be constant on P„-conjugacy classes

(Aj is P„-invariant). Since in GL(«,F), GL(«, F)-conjugacy classes contain
dense F„-conjugacy classes, A7- must be GL(«, F)-invariant.

Bernstein proved in [Bn2] that for F nonarchimedean, each P„-invariant

distribution is GL(«, F)-invariant. He proved (I) using essentially the Kir-

illov's strategy. Besides proving (UO) in the nonarchimedean case, he gave a
different proof of the implication (I) => (UO).

Bernstein states in [Bn2] that Kirillov's proof of (I) for F archimedean in

[Kil] is incorrect, and he wrote that he himself had an almost complete proof

(see [Bn2, p. 55]). In any case, there is no written complete proof of (I) in the
archimedean case now. We would say that Kirillov's proof is incomplete rather

than incorrect. He failed to give a complete argument that the distribution Ar

is GL(«, F)-invariant. As was noted by Bernstein, the tools used in Kirillov's

paper do not seem to be sufficient for proving (I). The distribution A7- is a very

special one. Actually (I) would imply that it is a multiple of an irreducible char-

acter; so by Harish-Chandra's regularity theorem, it is locally Ll and analytic
on regular semisimple elements. So if one proves that the (eigen) distribution

AT is locally L1 and analytic on regular semisimple elements, one could apply

finite-dimensional argument. This may provide a strategy to prove (I) in the

archimedean case. This would be a longer proof, and there are also some dis-

advantages in proving (UO) through (I). We shall say a few words about these

disadvantages. Before that, observe that there is an implicit proof of (UO) in
[Vo3].
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We have mentioned that the approach to the unitary dual of GL(«, F) is ex-

pected to be applicable to GL(«) over a central division F-algebra A . As far as

we understand, Vogan's description of the unitary dual of GL(«, H) confirms
this. Here (UO) cannot be proved through (I), simply because (I) is false in gen-

eral in this case. The simplest example can be obtained for GL(2, A) (A / F).

It is not difficult to see that there exist (irreducible) tempered representations

which are reducible when restricted to a nontrivial parabolic subgroup. Thus,
it may be more reasonable to search for proof of (UO) which works also for

division algebras. There are some candidates for it (see the last remark at the

end of this section).

After all, we have the following:

Theorem. Let F be a locally compact nondiscrete field. Set

B = {u(ô,n),   [vau(ô,n)]x[v-au(ô,n)\,   ôeD",   neN,   0<a<{}.

Then

(i) if di,... , ak e B, then axx ■■■ x ake Irr" ;
(ii) if it e Irr", then there exist ax, ... , am e B, unique up to a permuta-

tion, such that

it = ax x ■■ ■ x am.

We remind the reader once more that there is no written complete proof yet

of (UO) in the archimedean case, but there is a complete proof [Vo3] of the

above theorem in this case.

Remarks. ( 1 ) We give in [Td4] a concrete realization of the topological space

GL(«, F)~ when F is nonarchimedean.

(2) The last theorem, together with [Ka], implies that it e SL(n, C)~ is
isolated if and only if it is the trivial representation and n^2.

(3) Let F be nonarchimedean. Let p e Irr" be a representation having

a nontrivial compactly supported modulo center matrix coefficient. Then for

k e N, the representation

v(k~x)p x f^-3'p X ■ ■ ■ x u~^k~x^ p

has a unique square integrable subquotient which will be denoted by ô(p, k).

In this way one obtains all D" (see [Ze] and [Jcl]). In [Td4] we have proved

that it e GL(n, F)~ is isolated modulo center if and only if it equals some

u(ô(p, k), m) with k ^ 2 and m/2.
(4) One could try to prove (UO) for GL(«) over local division algebras by

proving first the following conjecture: Let A be a central local simple algebra, let

5 be the subgroup of the diagonal matrices in GL(2, A), let N be the subgroup

of upper triangular unipotent elements in GL(2, A), and let a be an irreducible

unitary representation of S. Then lnd^2'A\a) should be irreducible.
(5) A proof of (U3) and (U4) for GL(«) over a local nonarchimedean divi-

sion algebra is contained in [Td7].



AN EXTERNAL APPROACH TO UNITARY REPRESENTATIONS 249
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