Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

New points of view in knot theory


Author: Joan S. Birman
Journal: Bull. Amer. Math. Soc. 28 (1993), 253-287
MSC: Primary 57M25; Secondary 20F36, 57-02
DOI: https://doi.org/10.1090/S0273-0979-1993-00389-6
MathSciNet review: 1191478
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [Al1] J. W. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. U.S.A. 9 (1923), 93-95.
  • [Al2] J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), 275-306. MR 1501429
  • [Arn1] V. I. Arnold (ed.), Theory of singularities and its applications, Adv. in Soviet Math., vol. 1, Amer. Math. Soc., Providence, RI, 1990. MR 1089667 (91i:58003)
  • [Arn2] -, The cohomology ring of the colored braid group, Notes Acad. Sci. USSR 5 (1969), 227-232.
  • [Art] E. Artin, Theorie der Zöpfe, Hamburg Abh. 4 (1925), 47-72.
  • [Bae] J. Baez, Link invariants of finite type and perturbation theory, Lett. Math. Phys. (to appear). MR 1193625 (93k:57006)
  • [Bax] R. J. Baxter, Exactly solvable models in statistical mechanics, Academic Press, London, 1982. MR 690578 (86i:82002a)
  • [BD] A. A. Belavin and V. G. Drinfeld, On classical Yang-Baxter equation for simple Lie algebras, Funct. Anal. Appl. 16 (1982), 1-10. MR 674005 (84e:81034)
  • [Be] D. Bennequin, Entrlacements et équations de Pfaffe, Asterisque 107-108 (1983), 87-161. MR 753131 (86e:58070)
  • [Bi] J. S. Birman, Braids, links and mapping class groups, Ann. of Math Stud., vol. 84, Princeton Univ. Press, Princeton, NJ, 1974. MR 0375281 (51:11477)
  • [BL] J. S. Birman and X. S. Lin, Knot polynomials and Vassiliev invariants, Invent. Math (to appear). MR 1198809 (94d:57010)
  • [BM1] J. S. Birman and W. W. Menasco, Studying links via closed braids III: Classifying links which are closed 3-braids, Pacific J. Math. (to appear). MR 1237139 (94i:57005)
  • [BM2] -, Studying links via closed braids VI: A non-finiteness theorem, Pacific J. Math., vol. 156 (1992), 265-285. MR 1186805 (93m:57005)
  • [BN] D. Bar Natan, On the Vassiliev knot invariants, Harvard Univ., preprint 1992. MR 1318886 (97d:57004)
  • [BW] J. S. Birman and H. Wenzl, Braids, link polynomials and a new algebra, Trans. Amer. Math. Soc. 313 (1989), 249-273. MR 992598 (90g:57004)
  • [BZ] G. Burde and H. Zieschang, Knots, de Gruyter, Berlin and New York, 1985. MR 808776 (87b:57004)
  • [C] J. H. Conway, An enumeration of knots and links and some of their algebraic properties, Computational Problems in Abstract Algebra (J. Leech, ed.), Pergamon Press, New York, 1970, pp. 329-358. MR 0258014 (41:2661)
  • [CCG] D. Cooper, M. Culler, H. Gillet, D. D. Long, and P. B. Shalen, Plane curves associated to character varieties of 3-manifolds, Univ. of California, Santa Barbara, preprint 1991.
  • [CGL] M. Culler, C. McA. Gordon, J. Leucke and P. B. Shalen, Dehn surgery on knots, Ann. of Math. (2) 125 (1987), 237-300. MR 881270 (88a:57026)
  • [De] M. Dehn, Die beiden Kleeblattschlingen, Math. Ann. 75 (1914), 402-413. MR 1511799
  • [Dr1] V. G Drinfeld, On a constant quasi-classical solution to the quantum Yang-Baxter equation, Doklady Acad. Nauk SSSR 273 (1983), 531-550. MR 725930 (85d:58040)
  • [Dr2] -, Quantum groups, Proc. ICM Berkeley, vol. 1, Amer. Math. Soc., Providence, RI, 1987, pp. 798-820.
  • [FH] M. Freedman and Z. H. He, On the energy of knots and unknots, Univ. of California, San Diego, preprint 1992.
  • [FHL] P. Freyd, J. Hoste, W. B. R. Lickorish, K. Millett, A. Ocneanu, and D. Yetter, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985), 239-246. MR 776477 (86e:57007)
  • [FW] J. Franks and R. F. Williams, Braids and the Jones polynomial, Trans. Amer. Math. Soc. 303 (1987), 97-108. MR 896009 (88k:57006)
  • [GL] C. McA. Gordon and J. Leucke, Knots are determined by their complements, Bull. Amer. Math. Soc. 20 (1989), 83-88. MR 972070 (90a:57006b)
  • [Go] L. Goeritz, Bermerkungen zur knotentheorie, Hamburg Abh. 10 (1934), 201-210.
  • [Gu] M. Gusarov, A new form of the Conway-Jones polynomial for knots via von Neumann algebras, Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov. (LOMI) 193 (1991), 4-9. MR 1157140 (93b:57007)
  • [Ha] W. Haken, Über das Homömorphieproblem der 3-Mannigfaltigkeiten, Math. Z. 80 (1962), 89-120. MR 0160196 (28:3410)
  • [He] G. Hemion, On the classification of homeomorphisms of 2-manifolds and the classification of 3-manifolds, Acta Math. 142 (1979), 123-155. MR 512214 (80f:57003)
  • [Ho] J. Hoste, A polynomial invariant of knots and links, Pacific J. Math. 124 (1986), 295-320. MR 856165 (88d:57004)
  • [Je] L. Jeffrey, Chern-Simons-Witten invariants of lens spaces and torus bundles, and the semiclassical approximation, Oxford Univ., preprint 1992. MR 1175494 (93f:57042)
  • [Ji1] M. Jimbo, A q-difference analogue of $ {U(g)}$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69. MR 797001 (86k:17008)
  • [Ji2] -, Quantum R-matrix for the generalized Toda system, Comm. Math. Physics 102 (1986), 537-547. MR 824090 (87h:58086)
  • [Jo1] V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1-25. MR 696688 (84d:46097)
  • [Jo2] -, Braid groups, Hecke algebras and type $ {{\text{I}}{{\text{I}}_1}}$ factors, Geometric Methods in Operator Theory, Pitman Res. Notes Math. Ser., vol. 123, Longman Sci. Tech., Harlow, 1986, pp. 242-273.
  • [Jo3] -, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985), 103-111. MR 766964 (86e:57006)
  • [Jo4] -, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), 335-388. MR 908150 (89c:46092)
  • [Jo5] -, On knot invariants related to some statistical mechanics models, Pacific J. Math. 137 (1989), 311-334. MR 990215 (89m:57005)
  • [JR] V. Jones and M. Rosso, Invariants of torus knots derived from quantum groups, Abstracts Amer. Math. Soc., Abstract no. 874-16-124 (1992). MR 1209320 (94a:57019)
  • [JT] W. Jaco and J. L. Tollefson, Algorithms for the complete decomposition of a closed 3-manifold, Univ. of Conn. at Storres, preprint 1992. MR 1339832 (97a:57014)
  • [Kal] E. Kalfagianni, The $ {G_2}$ link invariant, Columbia Univ., preprint 1992.
  • [Kan] T. Kanenobu, Infinitely many knots with the same polynomial, Proc. Amer. Math. Soc. 97 (1986), 158-162. MR 831406 (88c:57010)
  • [Kau 1] L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), 417-471. MR 958895 (90g:57007)
  • [Kau 2] -, States models and the Jones polynomial, Topology 26 (1987), 395-407. MR 899057 (88f:57006)
  • [KM] R. Kirby and P. Melvin, The 3-manifold invariants of Witten and Reshetikhin-Turaev for $ {SL(2,\mathbb{C})}$, Invent. Math. 105 (1991), 473-545. MR 1117149 (92e:57011)
  • [Koh1] T. Kohno, Monodromy representations of braid groups and Yang-Baxter equations, Ann. Inst. Fourier (Grenoble) 37 (1987), 139-160. MR 927394 (89h:17030)
  • [Koh 2] -, Linear representations of braid groups and classical Yang-Baxter equations, Contemp. Math., vol. 78, Amer. Math. Soc., Providence, RI, 1988, pp. 339-363. MR 975088 (90h:20056)
  • [Kon] M. Kontsevich, Vassiliev's knot invariants, Adv. in Soviet Math. (to appear). MR 1237836 (94k:57014)
  • [Ku] G. Kuperberg, The 1, 0, 1, 1, 4, 10 Ansatz, preprint. MR 1995781 (2004g:18008)
  • [KV] L. Kauffman and P. Vogel, Link polynomials and a graphical calculus, J. Knot Theory Ramifications 1 (1992), 59-104. MR 1155094 (92m:57012)
  • [La] R. Lawrence, Homological representations of the Hecke algebras, Comm. Math. Phys. 135 (1990), 141-191. MR 1086755 (92d:16020)
  • [Li1] X. S. Lin, Vertex models, quantum groups and Vassiliev's knot invariants, Columbia Univ., preprint 1991.
  • [Li2] -, Finite type link invariants of 3-manifolds, Columbia Univ., preprint 1992.
  • [LM] W. B. R. Lickorish and K. Millett, A polynomial invariant for knots and links, Topology 26 (1987), 107-141. MR 880512 (88b:57012)
  • [Mak] G. S. Makanin, On an analogue of the Alexander-Markov theorem, Math. USSR Izv. 34 (1990), 201-211. MR 992984 (90d:57005)
  • [Mar] A. A. Markov, Über die freie Äquivalenz geschlossener Zöpfe, Recueil Math. Moscou 1 (1935), 73-78.
  • [Me] W. W. Menasco, A proof of the Bennequin-Milnor unknotting conjecture, SUNY at Buffalo, preprint 1992. MR 1273914 (94m:57022)
  • [Mo1] H. Morton, Threading knot diagrams, Math. Proc. Cambridge Philos. Soc. 99 (1986), 247-260. MR 817666 (87c:57007)
  • [Mo2] -, Seifert circles and knot polynomials, Math. Proc. Cambridge Philos. Soc. 99 (1986), 107-109. MR 809504 (87c:57006)
  • [Mu] K. Murasugi, The Jones polynomial and classical conjectures in knot theory, Topology 26 (1987), 187-194. MR 895570 (88m:57010)
  • [Pi] S. Piunikhin, Weights of Feynman diagrams and Vassiliev knot invariants, Moscow State Univ., preprint 1992.
  • [Pr] C. Procesi, The invariant theory of n by n matrices, Adv. in Math. 19 (1976), 306-381. MR 0419491 (54:7512)
  • [PT] J. Przytycki and P. Traczyk, Conway algebras and skein equivalence of links, Proc. Amer. Math. Soc. 100 (1987), 744-748. MR 894448 (88m:57012)
  • [Re1] N. Yu. Reshetikhin, Quasitriangular Hopf algebras and invariants of tangles, Leningrad Math. J. 1 (1990), 491-513. MR 1025161 (90k:17033)
  • [Re2] -, Quantized universal enveloping algebras, the Yang-Baxter equation and invariants of links, LOMI preprints E-4-87, E-17-87 (1988).
  • [Rol] D. Rolfsen, Knots and links, Publish or Perish, Berkeley, CA, 1976. MR 0515288 (58:24236)
  • [Ros] M. Rosso, Groupes quantique et modèles à vertex de V. Jones en théorie des noeuds, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 207-210. MR 956807 (90d:57009)
  • [RT] N. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597. MR 1091619 (92b:57024)
  • [Sei] H. Seifert, Verschlingungsinvarianten, Sber. Preuss. Akad. Wiss. 26 (1933), 811-828.
  • [Sem] M. Semenov Tian-Shansky, What is a classical R-matrix?, Funct. Anal. Appl. 17 (1983), 259-270.
  • [Si] J. Simon, How many knots have the same group?, Proc. Amer. Math. Soc. 80 (1980), 162-166. MR 574528 (81e:57009)
  • [St1] T. Stanford, Finite type invariants of knots, links and graphs, Columbia Univ., preprint 1992. MR 1404922 (97i:57009)
  • [St2] -, Braid commutators and Vassiliev invariants, Columbia Univ., preprint 1992.
  • [Ta] P. G. Tait, On knots I, II and III, Scientific Papers of P. G. Tait, vol. 1, Cambridge Univ. Press, Cambridge and New York, 1988, pp. 273-347.
  • [Tr] H. Trotter, Non invertible knots exist, Topology 2 (1964), 275-280. MR 0158395 (28:1618)
  • [Tu] V. Turaev, The Yang-Baxter equation and invariants of links, Invent. Math. 92 (1988), 527-553. MR 939474 (89e:57003)
  • [V1] V. A. Vassiliev, Cohomology of knot spaces, Theory of Singularities and its Applications (V. I. Arnold, ed.), Amer. Math. Soc., Providence, RI, 1990, pp. 23-69. MR 1089670 (92a:57016)
  • [V2] -, Topology of complements to discriminants and loop spaces, Theory of Singularities and its Applications (V. I. Arnold, ed.), Amer. Math. Soc., Providence, RI, 1990, pp. 9-21. MR 1089669 (92e:32019)
  • [Wa] M. Wada, Group invariants of links, Topology 31 (1992), 399-406. MR 1167178 (94e:57014)
  • [WAD] M. Wadati, Y. Akutsu, and T. Deguchi, Link polynomials and exactly solvable models, Non-Linear Physics (Gu, Li, and Tu, eds.), Springer-Verlag, Berlin, 1990. MR 1118654 (92f:57016)
  • [We1] H. Wenzl, Quantum groups and subfactors of type B, C and D, Comm. Math. Phys. 133 (1990), 383-432. MR 1090432 (92k:17032)
  • [We2] -, Representations of braid groups and the quantum Yang-Baxter equation, Pacific J. Math. 145 (1990), 153-180. MR 1066402 (92d:57009)
  • [Wi] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351-399. MR 990772 (90h:57009)
  • [Wh] W. Whitten, Knot complements and groups, Topology 26 (1987), 41-44. MR 880506 (88f:57014)
  • [WX] A Weinstein and P. Xu, Classical solutions of the quantum Yang-Baxter equation, Comm. Math. Phys. 148 (1992), 309-343. MR 1178147 (93k:58102)
  • [Y1] S. Yamada, An invariant of spacial graphs, J. Graph Theory 13 (1989), 537-551. MR 1016274 (90j:57004)
  • [Y2] -, The minimum number of Seifert circles equals the braid index, Invent. Math. 89 (1987), 346-356.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC: 57M25, 20F36, 57-02

Retrieve articles in all journals with MSC: 57M25, 20F36, 57-02


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1993-00389-6
Keywords: Knots, links, knot polynomials, knot groups, Vassiliev invariants, R-matrices, quantum groups
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society