Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Prevalence. An addendum to: ``Prevalence: a translation-invariant `almost every' on infinite-dimensional spaces'' [Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 2, 217-238; MR1161274 (93k:28018)]


Authors: Brian R. Hunt, Tim Sauer and James A. Yorke
Journal: Bull. Amer. Math. Soc. 28 (1993), 306-307
MSC: Primary 28C20; Secondary 46G12
DOI: https://doi.org/10.1090/S0273-0979-1993-00396-3
MathSciNet review: 1191479
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976), 147-190. MR 0425608 (54:13562)
  • [2] J. M. Borwein, Minimal cuscos and subgradients of Lipschitz functions, Fixed Point Theory and its Applications, (J.-B. Baillon and M. Thera, eds.), Pitman Lecture Notes in Math., vol. 252, Longman, Essex, 1991. MR 1122818 (92j:46077)
  • [3] J. P. R. Christensen, On sets of Haar measure zero in abelian Polish groups, Israel J. Math. 13 (1972), 255-260. MR 0326293 (48:4637)
  • [4] -, Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings, Publ. Dép. Math. (Lyon) 10 (1973), no. 2, 29-39. MR 0361770 (50:14215)
  • [5] -, Topology and Borel structure, North-Holland, Amsterdam, 1974.
  • [6] P. Fischer and Z. Slodkowski, Christensen zero sets and measurable convex functions, Proc. Amer. Math. Soc. 79 (1980), 449-453. MR 567990 (81d:28013)
  • [7] B. R. Hunt, T. Sauer, and J. A. Yorke, Prevalence: a translation-invariant "almost every" on infinite-dimensional spaces, Bull. Amer. Math. Soc. 27 (1992), 217-238. MR 1161274 (93k:28018)
  • [8] M. Jouak and L. Thibault, Directional derivatives and almost everywhere differentiability of biconvex and concave-convex operators, Math. Scand. 57 (1985), 215-224. MR 815437 (87e:49036)
  • [9] P. Mankiewicz, On the differentiability of Lipschitz mappings in Fréchet spaces, Studia Math. 45 (1973), 15-29. MR 0331055 (48:9390)
  • [10] -, On topological, Lipschitz, and uniform classification of LF-spaces, Studia Math. 52 (1974), 109-142. MR 0402448 (53:6268)
  • [11] J. Mycielski, Unsolved problems on the prevalence of ergodicity, instability and algebraic independence, Ulam Quarterly (to appear).$ ^{1}$ MR 1208681 (94c:28019)
  • [12] R. R. Phelps, Gaussian null sets and differentiability of Lipschitz map on Banach spaces, Pacific J. Math. 77 (1978), 523-531. MR 510938 (80m:46040)
  • [13] L. Thibault, On generalized differentials and subdifferentials of Lipschitz vector-valued functions, Nonlinear Anal. Theory Methods Appl. 6 (1982), 1037-1053. MR 678055 (85e:58020)
  • [14] M. Tsujii, A measure on the space of smooth mappings and dynamical system theory, J. Math. Soc. Japan 44 (1992), 415-425. MR 1167374 (93h:58028)
  • [15] -, Rotation number and one-parameter families of circle diffeomorphisms, Ergodic Theory Dynamical Systems 12 (1992), 359-363. MR 1176629 (93i:58048)
  • [16] -, Weak regularity of Lyapunov exponents in one dimensional dynamics, preprint.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC: 28C20, 46G12

Retrieve articles in all journals with MSC: 28C20, 46G12


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1993-00396-3
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society