Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Ralph Henstock
Title: The general theory of integration
Additional book information: Oxford Mathematical Monographs, Clarendon Press, Oxford, 1991, xi+262pp., US$75.00. ISBN 0-19-853566-X.

References [Enhancements On Off] (What's this?)

  • [1] John DePree and Charles Swartz, Introduction to real analysis, Wiley, New York, 1988. MR 1042294 (91c:00001)
  • [2] Ralph Henstock, The efficiency of convergence factors for functions of a continuous real variable, J. London Math. Soc (2) 30 (1955), 273-286. MR 0072968 (17:359f)
  • [3] -, Definitions of Riemann type of the variational integrals, Proc. London Math. Soc. (3) 11 (1961), 402-418. MR 0132147 (24:A1994)
  • [4] -, Theory of integration, Butterworths, London, 1963. MR 0158047 (28:1274)
  • [5] -, Lectures on the theory of integration, World Scientific Publishing Co., Singapore, 1988. MR 963249 (91a:28001)
  • [6] Jaroslav Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math. J. 7 (1957), 418-446. MR 0111875 (22:2735)
  • [7] -, Nichtabsolut konvergente Integrale, Teubner-Texte, vol. 26, Teubner, Leipzig, 1980. MR 597703 (82m:26007)
  • [8] Peng-Yee Lee, Lanzhou lectures on Henstock integration, World Scientific Publishing Co., Singapore, 1989. MR 1050957 (92j:26010)
  • [9] Robert M. McLeod, The generalized Riemann integral, Carus Math. Monographs, vol. 20, Math. Assoc. America, Washington, DC, 1980. MR 588510 (82h:26015)
  • [10] E. J. McShane, A unified theory of integration, Amer. Math. Monthly 80 (1973), 349-359. MR 0318434 (47:6981)
  • [11] -, Unified integration, Academic Press, New York, 1983. MR 740710 (86c:28002)

Review Information:

Reviewer: Robert G. Bartle
Journal: Bull. Amer. Math. Soc. 29 (1993), 136-139
DOI: https://doi.org/10.1090/S0273-0979-1993-00405-1
American Mathematical Society