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1. Introduction

Mathematical models for phenomena in the natural sciences often lead to

iteration. An often-quoted example (compare [105]) comes from population

biology. Assuming that the size of a generation of a population depends solely

on the size of the previous generation and may thus be expressed as a function

of it, questions concerning the further development of the population reduce

to iteration of this function. More often, a phenomenon from physics or other

sciences is described by a differential equation. In certain cases, for example, if
there is a periodic solution, this differential equation may be studied by looking

at a Poincaré return map (see, e.g., [ 118, § 1.4]), and again we are led to iteration.

If we solve the differential equation numerically, we are also likely to use a

method based on iteration. In fact, many algorithms of numerical analysis
(not only those for solving differential equations) involve iteration. One such

algorithm, Newton's method of finding zeros, will be discussed in some detail in

§6. Apart from that section, however, we will mainly study iteration theory in

its own right without having specific applications in mind. On the other hand, it

is hoped that the questions considered here may also serve as models for other

situations so that their study will enhance our knowledge of dynamical systems

in general.

There are two basic problems in iteration theory. The first (and classical) one

is to study the iterative behavior of an individual function; the second one is to

study how the behavior changes if the function is perturbed, the simplest (but

already sufficiently complicated) case being a family of functions that depends

on one parameter. Although the second aspect has received much attention in

recent years, we shall consider here only the first one, except for a few short

remarks in §7. On the other hand, a good understanding of the dynamics of an

individual function is of course necessary for the study of problems involving

perturbation of functions. We shall restrict ourselves to functions of one com-

plex variable that are meromorphic in the complex plane. This includes rational

and entire functions as special cases.

Although some work on iteration was already done in the last century, it

is fair to say that the iteration theory of rational functions originated with

the work of Fatou [71] and Julia [89], who published long memoirs on the

subject between 1918 and 1920. At least Fatou's motivation was partly to study

functional equations, yet another reason to consider iteration theory. At the

same time, the iteration of rational functions was also investigated by Ritt [116].

Some years later in 1926 Fatou [72] extended some of the results to the case of

transcendental entire functions. He did not, however, consider transcendental

meromorphic functions, because [72, p. 337] here, in general, the iterates have

infinitely many essential singularities. Julia did not consider the iteration of
transcendental functions at all. (As already pointed out by Fatou [72, p. 358],

there occurs a serious difficulty when one tries to generalize Julia's approach to

the transcendental case; see the discussion in §3.4.)

In the past decade there was a renewed interest in the iteration theory of

analytic functions, partially due to the beautiful computer graphics related to it

(see, for example, the book by Peitgen and Richter [112]), partially due to new

and powerful mathematical methods introduced into it (notably those intro-
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duced by Douady and Hubbard [62] and by Sullivan [129]). Most of the work
has centered around the iteration theory of rational functions, but there is also a

considerable number of papers devoted to transcendental entire functions; and

in recent years work on the iteration of transcendental meromorphic functions

has also begun.

There exist a number of introductions to and surveys of the iteration theory

of rational functions. We mention [27, 37, 42, 53, 63, 69, 93, 100, 108, 128]
among the more recent ones but also some older ones [40, 46, 110]. There are

comparatively few expositions of the iteration theory of transcendental func-

tions. We refer to [18] for the iteration of entire functions and to [69], which

has a chapter on this topic.

This paper attempts to describe some of the results obtained in the itera-

tion theory of transcendental meromorphic functions, not excluding the case of

entire functions. The reader is not expected to be familiar with the iteration

theory of rational functions. On the other hand, some aspects where the tran-

scendental case is analogous to the rational case are treated rather briefly here.

For example, we introduce the different types of components of the Fatou set

that occur in the iteration of rational functions but omit a detailed description

of these types. Instead, we concentrate on the types of components that are

special to transcendental functions (Baker domains and wandering domains).

This article is mainly an exposition of known results, but it also contains

some new results. For example, Theorems 5 and 16 have been known before

only for entire functions or special classes of meromorphic functions. Other

results like Theorem 10 or Corollaries 1 or 2 are certainly known to those who

work in the field, but they do not seem to have been stated explicitly before.

As already mentioned, there are beautiful computer graphics related to the

theory, and there are many places (besides [112]) where such pictures can be

found for rational functions. Although Julia sets (and bifurcation diagrams) of
transcendental functions can compete in their beauty and complexity very well

with those of rational functions, this article is not illustrated with such pictures.

The interested reader is referred to [53-56, 96].

2. Fatou and Julia sets

2.1. The definition of Fatou and Julia sets. Let / : C —► C be a meromor-

phic function, where C is the complex plane and C = C U {oo}. Through-

out this paper, we shall always assume that / is neither constant nor a linear

transformation. Denote by /" the «th iterate of /, that is, f°(z) — z and

/*(*) = /(/"_1(*)) for « > 1. Then fn{z) is defined for all z € C except
for a countable set which consists of the poles of /, f2, ... , fn~x . If / is

rational, then / has a meromorphic extension to C ; and, denoting the exten-

sion again by f, we see that /" is defined and meromorphic in C. But if /

is transcendental—and this is the case we are mainly interested in—there is, of

course, no (reasonable) way to define /(oo).

The basic objects studied in iteration theory are the Fatou set F = F(f) and
the Julia set J — J(f) of a meromorphic function /. Roughly speaking, the

Fatou set is the set where the iterative behavior is relatively tame in the sense

that points close to each other behave similarly, while the Julia set is the set



154 WALTER BERGWEILER

where chaotic phenomena take place. The formal definitions are

F = {z £ C : {f : n e N} is defined and normal in some neighborhood of z}

and

J = C\F.
As already mentioned, the requirement that /" be defined is always satisfied

if / is rational, and hence it can be (and of course always is) omitted from

the definition. An analogous remark applies to transcendental entire functions,

where /" is defined for all z e C. In this case, we always have oo € /.

A similar case is given by meromorphic functions with exactly one pole if

this pole is an omitted value. (A complex number z0 is called an omitted value

of the meromorphic function /, if f(z) ^ zq for all z e C.) In this case, if

the pole of / is denoted by z0 , we have {z0, 00} c /, and f(z) is defined

for all z e C\{z0, 00}.

It is not difficult to show that / has the form

eg(z)

for some positive integer m and some entire function g in this case. It is no

loss of generality to assume that zq = 0 so that

because otherwise we may consider <j>~x(f{4>(z))) instead of /, where 4>{z) =

z + Zfj. More generally, instead of maps of the form (1), we may consider

analytic self-maps of C\{0} here, without requiring that 0 be a pole of the

map; compare [19, 36, 91, 92, 94, 95, 104, 114]. We shall restrict ourselves,
however, to the case where / is meromorphic in C, our main interest being in

the case where / is entire or has several poles anyway.

In the remaining case, where / has either at least two poles or only one pole

which is not an omitted value, there are infinitely many points that are mapped

onto a pole of / by some iterate of /. For z0 € C, we define the backward

orbit O~(zo) of Zfj by

o-(zQ) = {jr"(z0),

where /~"(z0) = {z : fn{z) = z0}. Then the above statement is equivalent

to saying that O~(oo) is an infinite set. In fact, already /-3(oo) is infinite,

as follows easily from Picard's theorem. The largest open set where all iterates

are defined is given by C\0-(oo). Since /(C\0~(oo)) c C\0-(oo) and since

0~(oo) has more than two elements, {/"} is normal in C\0~(oo) by Montel's
theorem. Hence

F = C\0-(oo)   and   J = 0-(oo);

compare [21] and [114]. We see that in this case the requirement that {/"} be
normal can be omitted from the definition.

From this point of view, the iteration theory of entire functions and of mero-

morphic functions with one pole which is an omitted value is quite different

from that of general meromorphic functions, which have at least two poles or
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only one pole which is not omitted. In the first two cases, it is clear where the

iterates are defined, and we ask where they form a normal family. In the third

case, we just ask where they are defined, and this then implies that they form a

normal family there. Therefore, it is not surprising that there are major differ-

ences between these cases. On the other hand, there are also many analogies,

but even here the proofs are often quite different.

According to the above remarks we shall divide the class of transcendental

meromorphic functions for further reference into three subclasses:

• E = {f : f is transcendental entire} ;

• P = {f : / is transcendental meromorphic, has exactly one pole,

and this pole is an omitted value } ;

• M = {f : f is transcendental meromorphic and has either at least
two poles or exactly one pole which is not an omitted value } .

Here E and M are thought of as mnemonics for entire and (general) meromor-

phic functions, while P stands for one pole (or punctured plane). As already

mentioned, we may (and often will) assume that functions in P have the form

(1).

2.2. Elementary properties of Fatou and Julia sets. By definition, F is open

and / is closed. The properties of F and J contained in the following three

lemmas are also easily verified, the proofs for transcendental functions being

analogous to those for the rational case.

Lemma I. If f is rational, f € P, or f e E, then F(f) = F(f) and J(f) =
/(/") for all n>2.

Here we have to exclude f £ M, because then /" is not meromorphic in C

so that F(f") and J(f") are not defined. (There is, of course, a natural way

to define F(f") forfeM and n > 2, or, more generally, to define F(f) for
functions / meromorphic in C except for countably many points. Then the

conclusion of Lemma 1 holds for such functions.)

Lemma 2.  F and J are completely invariant.

Here, by definition, a set S is called completely invariant if z € S implies

that f(z) G S, unless f(z) is undefined, and that w € S for all w satisfying

f(w) = z.

Lemma 3. Either J = C or J has empty interior.

We note that the case J = C is actually possible. Examples of rational
functions with this property are given by the rational functions that come from

the multiplication theorems of elliptic functions. Usually, Lattes ([98], see also

[90]) is credited with having introduced them into the subject, but it should

perhaps be mentioned that already Böttcher [38, p. 63] was aware of these

examples. For other examples of rational functions satisfying J — C we refer

to [27, §9.4, §11.9]. The first example of an entire function with this property

was given by Baker [11], who proved that J(Xzez) = C for a suitable value of

A. Later, Misiurewicz [109] proved that J{ez) — C, confirming a conjecture of

Fatou [72, p. 370]. To obtain an example in P, we note that modifications of

Baker's argument show that J(Xez¡z) = C for a suitable value of X. Finally,
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as an example in M, we mention that /(Atanz) = C for suitable values of A.

We comment on these examples in §4.8. We note that while J = C is possible,

we always have F ^ C. In fact, as we shall see in §3.3, J is a perfect (and

hence uncountable) set.

We say that z0 is exceptional if 0~{zq) is finite. It is not difficult to see

that meromorphic functions have at most two exceptional values. (For tran-

scendental functions this is an immediate consequence of Picard's theorem.)

For rational functions the exceptional values are in the Fatou set. This is not

necessarily the case for transcendental meromorphic functions. If / € P with

pole at Zfj, then zq and oo are exceptional, but there are no further exceptional

values. Similarly, if / £ E, then oo is always exceptional so that there is at

most one finite exceptional value. If a function f £ E has a finite exceptional

value z0, then it has the form f(z) = zq + (z - zo)meg(z) for some nonnega-

tive integer m and an entire function g so that / can also be considered as a

self-map of the punctured plane.

A simple consequence of Montel's theorem is the following result.

Lemma 4. If zq £ J is not exceptional, then J — O~(zo).

Similar to the backward orbit O~(z0), we define the forward orbit 0+(zq) of

zo € C by O+(z0) = Un>o f(zo) ■ Of course, here the union is taken only over

those n > 0 for which f"(z0) is defined. The orbit O(zq) of Zo is defined by

O(z0) = O+{z0) U O-(zo) • For a subset S of C, we put 0±(5) = Uz€s 0±{z)
and 0{S) = Uzes ^(z). With this terminology, Lemma 2 may be written in
the form 0(F) c F and 0{J) C J.

Another simple consequence of Montel's theorem is that if U is an open set

that contains a point of /, then C\0+(U) contains at most two points, and

these points are exceptional. For rational /, this implies that 0+(J nU) = J

and even that f(J n U) — J for all sufficiently large n ; see [27, Theorem

4.2.5]. For transcendental / we find that J\0+(J n 17) contains at most two
points and that these points are exceptional. However, we cannot deduce from

this that J\f"(J n U) contains only two points for sufficiently large n. In

general, J\fn{J n U) will contain neighborhoods of the exceptional points (if

they exist). But if / £ M does not have exceptional points or if they are in F ,

then f(J nU) - J for all sufficiently large n .

3. Periodic points

3.1. Definitions. An important role in iteration theory is played by the periodic

points. By definition, zq is called a periodic point of / if f"(zo) = zq for

some n > 1. In this case, n is called a period of z0 , and the smallest n with

this property is called the minimal period of zq . For a periodic point zq of
minimal period n , (/")'(z0) is called the multiplier of z0 . (If z0 = oo , which

can happen only for rational function /, of course, this has to be modified.

In this case, the multiplier is defined to be (gn)'(0) where g(z) = l//(l/z).)

A periodic point is called attracting, indifferent, or repelling accordingly as the
modulus of its multiplier is less than, equal to, or greater than 1. Periodic

points of multiplier 0 are called superattracting. (Some writers reserve the

term attracting for the case 0 < |(/n)'(z0)| < 1, but we consider superattracting

as a special case of attracting.) The multiplier of an indifferent periodic point
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is of the form e2nia where 0 < a < 1 . We say that zq is rationally indifferent

if a is rational and irrationally indifferent otherwise. Also, a point z0 is called

preperiodic if /"(zo) is periodic for some n > 1. Finally, a periodic point of

period 1 is called a fixed point.
It is easy to see that attracting periodic points are in F, while repelling

and rationally indifferent periodic points are in /. For irrationally indifferent

periodic points the question whether they are in F or J is difficult to decide.

Both possibilities do occur. We refer the reader to the classical papers of Cremer

[47, 49] and Siegel [119], as well as more recent work of Yoccoz [138, 139]. An

exposition of these and other results, together with further references, can be

found in [113].
The behavior of the iterates in the neighborhood of a fixed point (or, more

generally, a periodic point) is intimately connected with the solution of certain

functional equations. For most results in this direction, it is required only that

the function under consideration is defined in a neighborhood of the fixed point,

and it is usually irrelevant whether it extends to a rational or transcendental

meromorphic function. Therefore, we omit this topic here but refer to the

papers and books on iteration of rational functions cited in the introduction.

3.2. Existence of periodic points. It is clear that a rational function has periodic

points of (not necessarily minimal) period n for all n > 1 . Transcendental

entire functions, however, need not have fixed points, that is, periodic points

of period 1 . A simple example is given by f(z) = ez + z . On the other hand,

already Fatou [72, p. 345] proved that an entire transcendental function / has

at least one periodic point of period 2. The idea is to consider the function

{)        f(z)-z   ■

If / does not have periodic points of period 2 (and hence does not have fixed
points), then h is an entire function which does not take the values 0 and 1.

By Picard's theorem h is constant. Once this is known, it is not difficult to

obtain a contradiction. Fatou's result was generalized by Rosenbloom [117],

who proved the following theorem.

Theorem 1. An entire transcendental function has infinitely many periodic points

of period n for all n>2.

The idea of the proof is similar. Instead of Picard's theorem, however, Rosen-

bloom used something stronger, namely, Nevanlinna's theory on the distribution

of values, which may be considered as a quantitative version of Picard's theo-
rem. Since this is the only place in this paper where we use Nevanlinna theory,

we do not give an introduction to it but refer to [79, 87, 111] for notation and

basic results.

To prove Theorem 1, we suppose that /" and hence / have only finitely

many fixed points and consider the auxiliary function h defined by

n{Z)     f-Hz)-z-
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Then

N(r,h) = 0(T(r,f-1)),

x(r>j¡) =0(logr),

and

7V(r'^r) = 0(:r('''/"_1))

as r-too. Also, it is not difficult to prove that T(r, f"~l) = o{T(r, /")) as

r —► oo outside some exceptional set of finite measure; see [87, p. 147]. (In fact,

this last result even holds without exceptional set; see [45, Theorems 1 and 2]

or [79, Lemma 2.6].) We deduce that T(r, h) ~ T(r, f") and hence that

N(r,h) + N^r,^j+N^r, ^ly) = o(T(r, h))

as r —> oo outside the exceptional set. This contradicts Nevanlinna's second

fundamental theorem. Thus the proof of Theorem 1 is complete.

One may ask whether there is some quantitative version of Theorem 1 in the

sense that there is a lower bound for N(r, l/(f"(z) - z)) in terms of T(r, f")

if n > 2 and f £ E. Denote by ô(a, h) the deficiency of a meromorphic h

with respect to the value a £ C .

Question 1. Do we have <5(0, f"(z) - z) = 0 (or at least ¿(0, fn(z) - z) < 1)

if / g E and n > 2?

Some (much weaker) results of this type can be found in [4, 5, 28, 136].

If f £ P, then the conclusion of Theorem 1 is true even if n = 1 . To see

this, suppose f £ P and define F(z) = f{z)/z. Then F has no zeros and

at most two poles. Hence, by Picard's theorem F takes the value 1 infinitely

often, that is, / has infinitely many fixed points. If / £ M, then / need not

have fixed points; consider f(z) = z+ \/g(z) where g is entire transcendental.

But we shall see below that / has infinitely many periodic points of period n
if n > 2.

Baker [4-6,8] seems to have been the first who addressed the question in

which cases a rational or entire function may fail to have periodic points of

minimal period n for some n. He proved [8] that if a rational function /

of degree d > 2 has no periodic point of minimal period n , then n = 2 and

d £ {2, 3, 4} or « = 3 and d = 2. Moreover, if / is a polynomial, then only

the case n-d-2 can occur. Earlier he had proved [6] that if / is an entire

function, then there exists at most one integer n > 1 (depending on f) such

that / does not have periodic points of minimal period n .
The latter result can be strengthened as follows.

Theorem 2. If f is a transcendental meromorphic function and n > 2, then f

has infinitely many periodic points of minimal period n .

As already mentioned, this also holds for n = 1 if / £ P, but not in general

if / € E or / € M.
Theorem 2 was proved in [29] if / £ E and in [36, Chapter 5.2] if f £ P.

A proof for f £ M, using the ideas of [30], is as follows.
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Suppose first that fn~x has at least three poles P1.P2.P3- Define g - f"~l

and denote by m¡ the order of the pole p¡. There exist functions h¡, defined
and analytic in a neighborhood of 0, such that g(pj + hj(z)) = z~m>. Define
kx{z) = p, + hi{zm^), k2(z) =p2 + h2(zm>m>), and k3{z)=p3 + hi(zm>mi) so

that g(kj(z)) = z-mim2'"3 Suppose now that / does not have periodic points

of period n in neighborhoods of P1.P2.P3- Then F(z) = f^z~m'm2m:i) =

fn(kj{z)) t¿ kj(z) in a neighborhood of 0. Hence

(F(z)-kl(z))(k3(z)-k2(z))

(F(z)-k2(z))(k3(z)-kl(z))r    '    '

in a neighborhood of 0, contradicting Picard's theorem. Hence the periodic

points of period n must accumulate at pi , P2, or P3. Since periodic points
of period k where 1 < k < n - 1 cannot accumulate at poles of /"_1 , we

deduce that / has infinitely many periodic points of minimal period n .

The case that /""' has exactly two poles is similar. Here we choose k\(z) =
Px+hx{zm*), k2(z) = p2 + h2{zm*), F(z) = f{z~m^) and observe that

F(z)-kl(z)

Fiz)-^)^0'1'00

in a neighborhood of 0.
Finally, we consider the case that f"~l has only one pole but is in M. Then

necessarily n = 2 or n = 3. We leave it to the reader to check that the method

of [29] can be extended to this case.

It is perhaps worth mentioning (and, at least for me, surprising) that the

proof given above for functions with at least two poles is shorter and more

elementary than the proofs for the classes E and P so that these questions are

much simpler for functions with poles than for entire functions. We will give a

generalization of Theorem 2 in §3.4. Its proof, however, will be less elementary

(but still short).

3.3. The Julia set is perfect. The results concerning the existence of periodic
points may be used to prove that / ^ 0. More generally, we have the following

result.

Theorem 3. Let f be a meromorphic function. Then J(f) is perfect.

Recall that a set is called perfect if it is closed, nonempty, and does not
contain isolated points.

We first prove that J is not empty and in fact an infinite set. There are essen-

tially two ways to do this if / is rational. One method is to assume that ft —* <j>

uniformly in C. Then </3 must also be rational and deg(<73) = Hindoo deg(/">).

But deg(f"J) = (deg(f))"j —► 00 as ;' —► 00, provided deg(/) > 2, a contradic-
tion. The other method (which is the one used by Fatou and Julia) is to prove

that / has a fixed point which is repelling or has multiplier 1. Once a point

z0 € J is found, it is not difficult to see that O~(z0) is infinite. Hence J is

infinite because 0~{zq) c /.

Once this is known, we can prove that J is perfect as follows. Suppose that

wo £ J, and let TV be a neighborhood of w0. We can find W\, w2, w3 £

J\O+(w0). Because {/"|/v} is not normal, Wj£0+{N) for some j £ {1,2,3}.
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Hence 0~(Wj) n A^\{u;0} is not empty. In particular, J n 7V\{u;o} is not
empty. Hence wq is not isolated, that is, / is perfect.

Both methods to prove that J is infinite do not generalize to the case where

/ is transcendental (see, however, the discussion of the second method in the

next section). On the other hand, it is clear from the discussion in §2.1 that

J(f) is an infinite and, in fact, a perfect set if / 6 M.

We sketch how one can prove that /(/) is infinite in the case that / £ E or

f £ P. First we note that we may assume / has infinitely many fixed points.

As already mentioned above, this is always the case if f £ P. And if f £ E,

then we may consider f2 instead of f because of Lemma 1, and f2 always

has infinitely many fixed points by Theorem 1. If infinitely many of the fixed

points of f are in /, then we are done. Hence we may assume that there exist

two fixed points p and q of f that are contained in F. If p and q are

in different components of F, then any path connecting them must meet J,

and we are also done. Thus we may assume that there exists a component U

of F which contains p and q . Clearly, the limit functions of {f\u} cannot
be constant. We deduce that if fn'(z) -* <p(z) for z £ U as j' —> oo, then

fnJ+i-"j(z) -» z for z £ U. This implies that f\y is an automorphism of

U. Hence f~l(U) contains components of F different from U. Again, any

path connecting these components meets J. This completes the proof that /

is an infinite set. (With a little more effort one can show that a component of

F cannot contain two fixed points; see [27, Lemma 6.9.3], and compare also

Theorem 6 in §4.2.) The proof that J is perfect can now be carried out as in
the rational case.

3.4. Julia's approach. So far our development of the theory has followed Fa-

tou's ideas. Julia based his theory on the closure of the set of repelling periodic

points. One of the basic results of the theory is that these two sets are actually
equal.

Theorem 4. Let f be a meromorphic function. Then J(f) is the closure of the

set of repelling periodic points of f.

For rational /, this result was obtained by both Fatou [71, §30, p. 69] and

Julia [89, p. 99, p. 118]. Their proofs, however, were different. (A good ex-

position of both proofs can be found in [108, §11].) Fatou proved first that

any point in J is the limit point of periodic points and then that there are

only finitely many nonrepelling periodic points, which together implies the re-

sult. The first part does carry over to transcendental functions ([72, p. 354],

see also [44]), but the second part clearly does not, as can be seen by simple

examples like /(z) = ez + z + 1 . For Julia's method it is essential that the

set of repelling periodic points is not empty. In fact, it suffices that the set of

repelling and rationally indifferent periodic points is not empty, and a rational

function always has at least one fixed point which is repelling or has multiplier

1 (see [71, §2, p. 168] and [89, p. 85, p. 243]). Julia's method does carry over
to transcendental functions with a repelling or rationally indifferent fixed point

which is not exceptional (this is done in [57, pp. 229-230; 59, pp. 69-70], but
in general transcendental functions need not have such a fixed point; in fact,

they need not have fixed points at all.
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Baker [10] proved that Theorem 4 holds for entire transcendental functions

as well. His proof was based on a deep theorem of Ahlfors [2, 79, 111] from
his theory of covering surfaces. Theorem 4 was extended to class P in [36,

Theorem 5.2] and to class M in [21, Theorem 1], the proofs being based again
on Ahlfors's theorem.

We sketch the argument for class M and begin with the statement of a ver-
sion of Ahlfors's theorem. (A different version is used in [10] and [36].) Unfor-

tunately, lack of space prevents us from discussing the proof of this important
result.

Lemma 5. Let f be a transcendental meromorphic function, and let D\,D2,

..., D¡ be five simply connected domains in C with disjoint closures. Then

there exists j £ {1, 2, ... , 5} and, for any R > 0, a simply connected domain

G c {z £ C : \z\ > R} such that f is a conformai map of G onto D¡. If f
has only finitely many poles, then "five" may be replaced by "three".

Following [21], we deduce the following result.

Lemma 6. Suppose that f £ M and that z\, z2, ... , z5 e 0~(oo)\{oo} are

distinct. Define n¡ by fJ(Zj) = oo. Then there exists j £ {1,2, ... , 5} such

that Zj is a limit point of repelling periodic points of minimal period n¡■ + 1. If
f has only finitely many poles, then "five" may be replaced by "three".

To deduce Lemma 6 from Lemma 5, we choose the Dj as discs around z¡

where the radii are chosen so small that the Dj do not contain critical points
of / and that their closures are pairwise disjoint. There exists R > 0 such that

fn'(Dj) D {z : \z\ > R} U {oo}. We choose j and G according to Lemma 5.

Then we can find H c Dj such that fn> : H -> G, and hence fn'+1 : H ->• Dj

is a conformai mapping. Moreover, H c Dj, and this implies that the inverse

function f~"j~l of fnJ+l : H —> Dj has an attracting fixed point in Dj.

Clearly, this attracting fixed point of f~"J~l is a repelling periodic point of /

of period rij + 1. Because the Dj can be chosen arbitrarily small, the repelling
periodic points of period n¡ + 1 accumulate at Zj . Because zj is a pole of
fj, periodic points of period less than n¡ + 1 cannot accumulate at zj ; hence,
Zj is a limit point of repelling periodic points of minimal period n¡ + 1 . This
completes the proof of Lemma 6.

Lemma 6 yields immediately that the conclusion of Theorem 4 holds for

f £ M because J = 0~(oo) is perfect.

Another interesting consequence of Lemma 6 is that if f~n+1(oo) contains

more than four elements, then / has infinitely many repelling periodic points

of minimal period n . In particular, this is the case if f £ M and n > 4. We
also see that / has infinitely many repelling periodic points of minimal period
2 and 3 if / has more than two poles. On the other hand, it was proved

in [29] that if / is entire transcendental, then / has infinitely many repelling

periodic points of minimal period n for all n > 2. The method used there can
be extended to the case where n = 2 or n — 3 and / has one or two poles.
Hence we obtain the following generalization of Theorem 2.

Theorem 5. If f is a transcendental meromorphic function and n>2, then f
has infinitely many repelling periodic points of minimal period n .
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We remark that in view of Lemma 1, Julia's method can be used to obtain

Theorem 4 from Theorem 5. This does not, however, constitute a new proof of

Theorem 4, because the argument in [29] also uses Ahlfors's theorem. The fact

that all known proofs of the existence of repelling periodic points are based on

this deep result makes Julia's approach to start with the closure of the set of

repelling periodic points inadequate for transcendental functions, because it is

difficult to see that this set is not empty.
It would be of interest to give a more elementary proof of Theorem 4.

Question 2. Is there a proof of Theorem 4 which does not use Ahlfors's result?

As already mentioned, it suffices to prove the existence of a repelling or

rationally indifferent periodic point which is not exceptional.

4. The components of the Fatou set

4.1. The types of domains of normality. Let U be a (maximal) domain of

normality of the iterates of /, that is, a component of F. (Here and in the

following, "component" always means "connected component".) Then f"(U)

is contained in a component of F which we denote by U„ . A component U is

called preperiodic if there exist n > m > 0 such that U„ = Um . In particular, if

this is the case for m — 0 (where Uq = U) and some n > 1, then U is called

periodic with period n , and {U, U\, ... , U„-\} is called a (periodic) cycle of
components. Again, the smallest n with this property is called the minimal

period of U. In the case n = 1, that is, if f(U) c U, U is called invariant.

A component of F which is not preperiodic is called a wandering component

(or wandering domain).

For rational functions, we have f(U) = U\, but for transcendental functions

it is possible that f{U)^U\. For example, if f(z) = Xez where 0 < X < e~x ,

then F consists of a single component which contains 0, but clearly 0 ^ f(F).

Similarly, if f(z) — A tanz where 0 < A < 1, then F consists of a single

component which contains ±Xi, but ±Xi £ f(F).

Values in U\ \/( U) need not be omitted values. As an example, we consider

f(z) = zexp((-z2 + 3z - 2)/6). Then 0 and 2 are attracting fixed points,

while 1 is a repelling fixed point. Let V be the component of F that contains

0. All large positive real numbers are contained in a component U satisfying

f(U) c V ; that is, we have V = Ux . It is not difficult to show that U # V.
(For instance, this follows from the fact that U and V are simply connected

and symmetric with respect to the real axis.) It follows that 0 G U\\f(U).
On the other hand, it is easy to see that values in Ui\f(U) are asymptotic

values of /, the asymptotic path being contained in U. As pointed out in [21,

p. 242], one can deduce from Gross's star theorem that f(U) is a dense open

subset of U\ . If / € E, then U\\f(U) contains at most one point. I. N. Baker
has kindly informed me that this result was proved by M. Herring. It had also

been obtained independently in [34].

Question 3. Can U\\f(U) have more than two points if / G Ml

4.2. The classification of periodic components. The behavior of /" in periodic
components is well understood.
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Theorem 6. Let U be a periodic component of period p. Then we have one of

the following possibilities:

• U contains an attracting periodic point zq of period p. Then fnp(z) —►

z0 for z G U as n '-* oo, and U is called the immediate attractive basin

Of Zq.
• dU contains a periodic point z0 of period p and fnp(z) —► z0 for

z £ U as n -» oo. Then (fp)'(z0) = 1 // z0 G C. (For z0 = oo we

¿ave (gp)'(0) = 1 where g(z) — l//(l/z).) In this case, U is called a
Leau domain.

• There exists an analytic homeomorphism </3 : U —► D where D is the
unit disc such that <p(fp((/)-l(z))) = e2niaz for some a g R\Q. In this

case, U is called a Siegel disc.

• There exists an analytic homeomorphism <j> : U -» A where A is an

annulus, A = {z : 1 < \z\ < r}, r > 1, such that (¡>(fp(4>~\z))) = e2niaz

for some a g K\Q. In this case, U is called a Herman ring.

• There exists zq g dU such that fnp(z) —► zo for z £ U as n —> oo,

but fp(zo) is not defined. In this case, U is called a Baker domain.

Clearly, if / is rational, then Baker domains do not exist. If f £ E, then

Baker domains are possible only for zo = oo. Similarly, if / G P with pole at

0, then Baker domains are possible only for zo G {0, oo} .

The above classification theorem is essentially due to Cremer [48] and Fatou

[71]. Fatou [71, §56, p. 249] proved that if {f"\u} has only constant limit
functions, then U is an immediate attractive basin or a Leau domain, provided

/ is rational. His proof shows that the only further possibility in the case of

transcendental functions is that of a Baker domain. Cremer [48, p. 317] proved

that if {/"|i/} has nonconstant limit functions, then U is a Siegel disc or a

Herman ring. Neither Fatou nor Cremer stated the full classification theorem,
but Töpfer's remarks [134, p. 211] come fairly close to it.

We remark that when Fatou and Cremer wrote their papers, it was not known

yet that Siegel discs and Herman rings do actually exist, and they may have

believed that such domains do not exist. (Cremer [47, p. 154] wrote that it

is conjectured that rational functions do not have Siegel discs but also that he

does not see a reason for this conjecture.) Töpfer knew about Siegel discs, but

the existence of Herman rings (which Töpfer called "Zentrumring") was not
established yet.

In the above form the classification theorem was stated first by Baker, Kotus,

and Lü [21, Theorems 2.2 and 2.3]. In the case of rational functions it seems
to have been given first by Sullivan [129, 131]. We remark that the case of

an immediate attractive basin is sometimes further distinguished depending on

whether the attracting periodic point contained in it is superattracting or not.

If this is the case, then U is called a Böttcher domain; otherwise, U is called

a Schröder domain. The other notations are also not uniform in the literature:

Leau domains are also called parabolic domains; Herman rings are also named

after Arnold; and for Baker domains the names infinite Fatou component [82],

essentially parabolic domain [24], and domains at oo [59] are also used. The
term "Baker domain" seems to have been used first in [69, 70].

Besides the papers cited already, we refer to [27, 108, 127] for a proof of the
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classification theorem. Here only the case that / is rational is considered, but
the changes necessary to handle the case that / is transcendental are minor.

We note that if / is entire, then / does not have Herman rings. In fact, a

simple argument shows that /" —> oo in multiply connected components of F ;

see [133, p. 67]. Baker [19, Theorems 1 and 3] proved that analytic self-maps

of the punctured plane may have a Herman ring but at most one (which has

period 1). It is not clear whether this is possible for f £ P.

4.3. The role of the singularities of the inverse function. The periodic domains

are closely related to the set of singularities of the inverse function /_1 of /,

that is, the set of critical and finite asymptotic values of / and (finite) limit

points of these values. Denote this set by sing(/_1).

Theorem 7. Let f be a meromorphic function, and let C — {Uo, U\, ... , Up-\}

be a periodic cycle of components of F.

• If C isa cycle of immediate attractive basins or Leau domains, then Uj n

sing(/~ ' ) t¿ 0 for some j £ {0, 1, ... , p - 1}. More precisely, there

exists j £ {0, 1..... p - 1} such that Uj n sing(/_1) j= 0 contains a
point which is not preperiodic or such that Uj contains a periodic critical

point (in which case C is a cycle of superattractive basins).

• If C isa cycle of Siegel discs or Herman rings, then d Uj c 0+ (sing(/_ ' ))
forall j£{0, l,...,p-l}.

These results were proved by Fatou [71, §§30-31] for rational maps, but the

proofs extend to the transcendental case.

It follows from Theorem 7 that the number of cycles of immediate attractive

basins and Leau domains does not exceed the number of singularities of /~ '.
For transcendental functions, sing(/_1) may of course be infinite (and simple

examples like f(z) = ez + z+l or f(z) = ez + z + 2 show that there may,

in fact, be infinitely many cycles of immediate attractive basins and Leau do-

mains), but for a rational function / of degree d there are at most 2d - 2

singularities of /_1.
The number of cycles of Siegel discs and Herman rings of a rational func-

tion may also be bounded in terms of the degree d. The sharp bound is due

to Shishikura [121, p. 5], who, strengthening earlier results of Fatou [71, §30]

and Sullivan [131, p. 6], proved that the number of cycles of immediate attrac-

tive basins, Leau domains, and Siegel discs plus twice the number of cycles of

Herman rings does not exceed 2d - 2. Loosely speaking, cycles of immedi-
ate attractive basins, Leau domains, and Siegel discs require one critical point,

while cycles of Herman rings need at least two. (Theorem 7 gives an heuristic
argument of why this should be true but by no means proves it.) A result of

Shishikura's type for a class of transcendental entire functions can be found in
[70, Theorem 5].

One may ask whether Baker domains are also related to singularities of /~ ' .
Examples in [68, Example 3] and [82, p. 609] show that a periodic cycle of
Baker domains need not contain points of sing(/~ ' ).

Question 4. Let / be a meromorphic function with a cycle of Baker domains
that does not contain a point of sing(/~ ' ). Is there some relation between

sing(/~ ' ) and the boundaries of the domains of this cycle?
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We will see in Theorem 13 in §4.7 that if /" ■/* oo in a cycle of Baker

domains, then some domain in this cycle has a finite asymptotic value on its
boundary (regardless of whether there are singularities of /_1 in this cycle or

not). Question 4 asks whether more can be said if no points of sing(/_1) are

in this cycle. More specifically, one may ask the following question:

Question 5. Is it possible that a meromorphic function / has Baker domains

if 0+(z) is bounded for all z G sing(/-1)?

4.4. The connectivity of the components of the Fatou set. By definition, Siegel

discs are simply connected and Herman rings are doubly connected. In this

section we consider the connectivity of the other components of F .

Theorem 8. Let f be a meromorphic function, and let U be an invariant com-

ponent of F. Then the connectivity of U has one of the values 1, 2, or oo.

Here 2 occurs only when U is a Herman ring.

This was proved by Fatou [71, §32] if / is rational (see also [27, §7.5] for this

case) and by Baker, Kotus, and Lü [23, Theorem 3.1] if / G M. Of course, the

result implies that the connectivity of a periodic component (of period greater

than 1 ) also takes one of the values 1, 2, or oo if / rational. Probably this

remains true for functions in M as well, but the proof in [23] does not seem

to give this result.

Question 6. Let / be a meromorphic function, and let U be a periodic com-

ponent of F . Is the connectivity of U either 1, 2, or oo?

Baker, Kotus, and Lü [23, Theorem 6.1] also proved that, in contrast to

Theorem 8, the connectivity of a preperiodic component may take any value if

/ is rational or if f £ M. Moreover, they gave examples of functions in M

which have a wandering domain of any preassigned connectivity [22].

For functions in P and E, we have results stronger than Theorem 8. In

fact, as proved by Baker [18, Theorem 1], the connectivity of any component

of F is 1 or 2 if / is an analytic self-map of C\{0} and, hence, in particular

if f £ P. For entire functions we have the following result.

Theorem 9. If f G E, then any preperiodic component of F is simply connected.

In other words, multiply connected components of F are necessarily wan-
dering if / G E .

Theorem 9 is an immediate consequence of a result of Baker [13, Theorem

1], who proved that multiply connected components of F(f) are bounded if

f £ E. In order to give a proof of Theorem 9 (following Baker's argument), we

start with the following lemma. With further applications in mind, this lemma

is stated in a form more general than needed for the proof of Theorem 9. The

results contained in it can be found in [20, Lemmas 1 and 2; 23, Lemma 4.1]
(see also [15, Theorem 6; 103, Proposition A.l]).

Lemma 7. Let G be an unbounded open set in C with at least two finite bound-

ary points, and let g be analytic in G. Let D be a domain contained in G,

and suppose that gn(D) c G for all n and that gn\D -» oo as n -* oo. Then,
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for any compact subset K of D, there exist constants C and «o such that

(2) \gn(z')\ < \g"(z)\C

for all z, z' £ K and n> n0. If in addition, g(D) c D, then we also have

(3) loglog|g"(z)| = 0(«)

for all z £ D as n —> oo, and there exist a constant A > 1 and a curve y c D

tending to oo which satisfies g(y) c y such that

(4) |z|^ < \g(z)\ < \z\A

for z £ y. If C\G contains a connected set Y such that {a, oo} c T for some

a G C, then (2), (3), and (4) may be replaced by

(5) \g"(z')\<C\gn(z)\,

(6) log\gn(z)\ = 0(n),

and

(7) ^<\g(z)\<A\z\.

In particular, this is the case if G is simply connected.

In order to prove Lemma 7, we denote by Q. the plane punctured at two

finite boundary points of G. By [z, z']n we denote the hyperbolic distance of

two points z and z' in Í2. To prove (2), we note that

[gn{z),g»{z')]a < [gn(z),g"(z')]G < [gn(z),g"(z)]gn{D) < [z, z']D

and that the hyperbolic metric pa(z) satisfies

c
Psi(z)

ant c

\gn(z')\>\g"(z)\,thcn

|z|log|z|

for some positive constant c as  |z| -> oo ; see [3, §1.8].   It follows that if

c   r\s"(z">\   dt       c      /loelje"iz')
[gn(z),g"(z')]a>C-j -£L-=:Jlog(

,lgn(z)l    tlogt     2       \log\g»(z)

for sufficiently large n so that (2) holds with

(2
C = exp   - max [z, z]d

\C z,z'&K

In order to prove (4), we choose a as a curve in D that connects a point zq £ D

with g(z0) and define y = \J7=oSn(a) • Tnen (4) can be deduced from (2) if

we choose K = a U g (a). Similarly, choosing z' = g(z) in (2), we have

\g"(z)\ = \g"-l(z')\ < \gn-\z)f < \gn-2(z)f <■■■

for large n , and (3) follows by induction.

To prove (5)-(7), we proceed as above but define Q as the component of

C\r that contains G. Then pa(z) > c/\z\ for some positive constant c and
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all sufficiently large z £ Q. The arguments used above to prove (2)-(4) now

yield (5)-(7). This completes the proof of Lemma 7.
We now prove Theorem 9. Suppose that U is a multiply connected compo-

nent of F, and let a c U be a curve that is not null-homotopic in U. Define

<j„ = f(a). Then a„ is not null-homotopic in U„ so that U„ is multiply

connected for all n . It is not difficult to see that f"\u —► oo as n —> oo. By

(2), there exists a sequence (rn) tending to oo and a constant C such that

o„ c ann(r„, r%), where ann(r, R) = {z : r < \z\ < R] if 0 < r < R. By

Theorem 4 there exists a periodic point zo contained in int(c), the interior

of a . It follows that for all n, some point of the periodic cycle to which zo

belongs is contained in int(<r„). Hence D(0, r„) c int(<7„) for sufficiently large

n , where D(a, r) = {z : |z - a\ < r} for r > 0 and a £ C.

Suppose now that U is preperiodic. Replacing U by Um and / by /" for
suitable values of m and n , we may assume without loss of generality that U

is invariant. We deduce from Lemma 7 that there exist a constant A and a

curve y tending to oo such that |/(z)| < |z|^ for z £ y. For sufficiently large

n , an intersects y ; that is, we can find wn £ an n y . Denoting by M(r, f) the

maximum modulus of /, that is, M(r, f) = max|z|=r |/(z)|, we deduce that

M(rn , f) < max |/(z)| < rcn+x < (min |/(z)|)    < \f(wn)\c < \w„\CA < (rnf2A.

This is a contradiction to the hypothesis that / is transcendental and thus

completes the proof of Theorem 9.

The argument used above actually shows that certain classes of entire func-

tions do not have multiply connected domains of normality at all. For example,

using this method, one can obtain the following result.

Theorem 10. Suppose that f £ E and that for all e > 0 there exists a curve y

tending to oo such that \f(z)\ < M(\z\e, f) for z £y. Then all components of

F are simply connected. In particular, this is the case if log|/(z)| = 0(log|z|)
as z —► oo through some path.

On the other hand, examples of entire functions with multiply connected

components of the Fatou set are known. The first example was constructed in

[7]; further examples can be found in [14, 17, 84].

Baker [ 17] gave an example of a transcendental entire function with an in-

finitely connected (and hence wandering) domain of normality. In the other

examples cited, it is not clear what the connectivity of the multiply connected
components is.

Question 7. Is there an entire transcendental function whose Fatou set has mul-

tiply connected components of finite connectivity?

4.5. Wandering domains. The first example of an entire function with a wan-

dering domain was given by Baker [14]. We remark that the existence of wan-

dering domains follows directly from his results in [7] (existence of multiply

connected domains of normality) and [ 13] (multiply connected domains of nor-

mality are bounded), but [14] was written before [13] (although published later).
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Since then, many other examples have been constructed. The elementary

examples

/i(z) = z- 1 + e~z + 2ni

and

/2(z) = z + A sin(27rz) + 1

where 1 + 27iA = e2n,a for suitable real numbers a have been given by Herman

([81, p. 106; 130, p. 414]; see also [16, pp. 564, 567]). While the wandering
domain in Baker's example [14] is multiply connected, / and f2 have simply
connected wandering domains.

To prove that / has a wandering domain, define g(z) = z - 1 + e~z . (The

function g arises if we apply Newton's method to h(z) = ez - 1, that is,

g(z) — z - h(z)Ih'(z).) For k £ Z we define zk = 2nki. Then zk is a
superattracting fixed point of g. Denote by Uk the immediate attractive basin

of Zk , that is, the component of F(g) that contains zk . One can show that

J(g) = J(f\ ) ; compare [ 16, Lemma 4.5]. It follows that Uk is also a component

of F(fi), and we clearly have f(Uk) c Uk+i ; that is, Uk is wandering. It is
not difficult to see that Uk is simply connected for all k .

The proof that f2 has a simply connected wandering domain is similar. Here

a is chosen such that z + Xsin(2nz) has a Siegel disc at zero. In this example,

we obtain wandering domains Uk containing k £ Z. Here the Uk have the

additional feature that f\uk is univalent. Different examples of wandering
domains with this property have been constructed by Eremenko and Lyubich

[68, Example 2].
An example similar to / and f2 is given by

f(z) = z + Xsinz

where A G M is chosen so that the forward orbit of each critical point consists

only of critical points. For a discussion of this example, see [52, p. 222; 56, p.

290; 60, p. 52]. Other examples of wandering domains with various additional
properties have also been given. For example, Baker [17, Theorem 1] (see

also [16, Theorem 5.2]) has shown that the order of an entire function with

wandering domains may take any value.

In all examples mentioned so far, the iterates tend to oo in the wandering

domain. It is well known (see [23, Lemma 2.1; 48, p. 317; 71, §28]) that there
cannot exist nonconstant limit functions of {f"\u} if U is a wandering domain

of a meromorphic function /. Eremenko and Lyubich [68, Example 1] have

constructed an entire function / with a wandering domain U such that the

set of limit functions of {f"\u} contains an infinite number of finite constants.

In this example, the constant limit functions have oo as a limit point; that is,

oo is also a limit function of {f\u} • It is a well-known open problem [39,

Problems 2.77 and 2.87] whether this is always the case.

Question 8. Let U be a wandering domain of the transcendental meromorphic

function /. Does there exist a sequence (nk) suchthat f"k\u —► oo as k —» oo?

We remark that it has been shown in [33] that if / G E and U is a wandering

domain of /, then all finite limit functions of {f\u} are contained in the

derived set of 0+(sing(/-1)).
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Finally, we mention that Baker, Kotus, and Lü [22, §6] have modified the
method of Eremenko and Lyubich to construct a function f £ M which has a
multiply connected wandering domain U of preassigned connectivity such that

the limit set of {f"\u} contains infinitely many finite constants.

4.6. Classes of functions without wandering domains. One of the most impor-

tant results in the iteration theory of rational functions is the following theorem

of Sullivan [129, 130].

Theorem 11. Rational functions do not have wandering domains.

Together with Theorems 6 and 7, this leads to a fairly complete description
of the iterative behavior of rational functions on the Fatou set.

Sullivan's theorem has been extended to various classes of transcendental
functions. We mention the following classes:

• S — {/ : / has only finitely many critical and asymptotic values } ;

• F = {/ : / has a representation of the form f(z) — z + r(z)ep^
where r is rational and p is a polynomial} ;

• N = {/ : / has finite order and /'(z) = r(z)ep^(f(z) - z)
where r is rational and p is a polynomial} ;

.  R = {/ : f'(z) = r(z)(f(z) - z)2 or f'(z) = r(z)(f(z) - z)(f(z) - t)
where r is rational and x £ C}.

The names of the different classes are somewhat arbitrary. According to Ere-

menko and Lyubich [69, p. 624] S was chosen in honor of Speiser, who intro-

duced this class in a different context. Class N is of interest in connection with

/Vewton's method (compare §6), and class R consists of solutions of certain

.Riccati equations (but is also of interest for Newton's method).

Theorem 12. Functions in S, F, N, and R do not have wandering domains.

We note that all these classes contain the class of rational functions so that

Theorem 12 may be considered as a generalization of Theorem 11. The re-

sult that meromorphic functions in 5 do not have wandering domains was

proved by Baker, Kotus, and Lü [24]. This result had been obtained earlier
by Eremenko and Lyubich [67, 70] and Goldberg and Keen [75] for S n E
and by Keen [91], Kotus [94], and Makienko [104] for S n P (and, in fact,
for the corresponding class of analytic self-maps of the punctured plane). For

other subclasses of S, this had been proved by Baker [16, Theorem 6.2] and
Devaney and Keen [59, p. 72].

The result that functions in F do not have wandering domains was proved
by Stallard [125]. The result for the classes N and R can be found in [31]
and [35], respectively. In [35] the nonexistence of wandering domains is also
proved for solutions of certain other differential equations.

The proofs in the papers cited above depend crucially on the fact that if /
is in one of the above classes, then there exist only finitely many singularities

of /_1 that are not contained in preperiodic components. (This is clear for

f £ S and easy to see forf£N and f £ R, but the proof for f £ F is more

involved; see [125].) It follows that if U is a wandering domain, then there

exists «o such that U„ n sing(/_1) = 0 for n > «0 • Now two cases have to be
distinguished:
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(i)   Un is simply connected for all n > «o •

(ii)  Um is multiply connected for some m > «o •

In case (i), one uses the ideas of Sullivan [130], who introduced quasiconfor-

mal mappings into the subject. We sketch the argument very briefly. Consider

a quasiconformal homeomorphism of U„0 with complex dilatation p. Then

p can be extended to C in such a way that p(/(z)) = p(z)/'(z)//'(z) for

all z G C. Then there exists a quasiconformal homeomorphism O of C that

fixes 0, 1, and oo and whose complex dilatation is p. We now consider

fip = <p o / o <p_1 and observe that if / is in one of the classes under consider-

ation, then so is f<¡>. This sharply limits the possibilities for f®, and—loosely

speaking—a contradiction is obtained from the fact that there are many quasi-

conformal homeomorphisms of U„a and hence many functions p but not so

many functions fit,. For the details we refer to [16, 24, 27].

In case (ii) it is not difficult to obtain a contradiction to Theorem 10 if / is

entire and contained in S, F, or Ñ. A result similar to Theorem 10 can still

be obtained if / has finitely many poles, and this has been used to rule out case
(ii) for meromorphic functions in F and N ; see [31] and [125] for details. For

meromorphic functions in S, a different but still fairly elementary argument

has been used; see [24]. The proof that case (ii) cannot occur for / g R is

less elementary but uses results of Shishikura [ 122] obtained by quasiconformal

surgery. We refer to [35] for the details.

Besides the classes contained in Theorem 12, there are some other classes
of functions known to have no wandering domains. We mention that if g is

an analytic self-map of C\{0}, then there exist entire functions / satisfying
exp of = go exp. Thus results obtained for analytic self-maps of C\{0} may be

used to obtain results for entire functions / that admit a representation of the

above form. For example, one can prove using these ideas that if p and q are

polynomials, then f(z) = p(ez) + q(e~~z) does not have wandering domains.

For this and related results we refer to [16, 91, 94, 104].
If we combine the already mentioned result in [33] that all finite limit func-

tions of {/"|i/} are contained in the derived set of 0+(sing(/-1)) if / G E
and if U is a wandering domain of / with Theorem 15 in §4.8, we also obtain

some classes of entire functions without wandering domains. We note that this

is a fairly elementary way to obtain classes of functions without wandering do-

mains, while the proofs of Theorems 11 and 12 use quasiconformal mappings.

Question 9. Is there a proof of Theorem 11 (and Theorem 12) that does not use

quasiconformal mappings?

Some of the results concerning the nonexistence of wandering domains sug-

gest that there are relations between wandering domains and singularities of the

inverse function. In fact, similarly to §4.3 where we said that periodic compo-

nents of the Fatou set (seem to) require one respectively two singularities, one

may ask whether wandering domains require infinitely many of them, in a sense

which still has to be made precise. More specifically, one may ask the following

questions.

Question 10. Can a meromorphic function / have wandering domains if all (or

all but finitely many) points of sing(/~ ' ) are contained in preperiodic domains?
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Question 11. Let / be a meromorphic function with a wandering domain U

such that U„ n sing(/_I) = 0 for all n > 0. Is there some relation between

dUn and sing(/-')?

4.7. Baker domains. The first example of an entire function with a Baker do-

main was already given by Fatou [71, Example I], who considered the function

/(z) = z+l+e-z

and proved that f(z) -> oo as n -> oo for Rez > 0, that is, the right half-

plane is contained in an invariant Baker domain. An example of a Baker domain

of higher period was given by Baker, Kotus, and Lü [23, p. 606], who showed

that the function f(z)= l/z-ez has a cycle {U0, U\] of Baker domains such

that f2n\u0 -* oo and f2n\u¡ -» 0 as n -> oo.

We list some general properties of Baker domains. Let {Co, U\, ... , Up-\)

be a periodic cycle of Baker domains, and denote by z¡ the limit corresponding

to Uj, that is, fnp(z) —> Zj for z £ Uj as n -> oo. Clearly, f(z¡) = zj+l if

Zj ^ oo. (Here, by definition, zp — z$ .) It follows that there exists at least one

j £ {0, 1..... p - 1} such that z¡■ = oo, and for all j £ {0, 1..... p - 1}

there exists / = /(;') G {0, 1, ... , p - 1} such that f'(zj) = oo.

The Uj contain curves y¡ tending to Zj suchthat fp(yj) C yj and fp(z) ^

Zj as z-» Zj in y¡. To see this, we proceed as in the proof of Lemma 7 and

choose wo £ U0 and a curve a c Uq that joins Wq and fp(wo). We define

7o = \JZofnp(°) and Yj = fJ(yo) for > G {1, 2, ... , p - 1}. Then the y}
have the desired properties. Moreover, f(z) -* zJ+l as z —► Zj in yj. We

deduce that if z}■ = oo , then z;+i is an asymptotic value of /, the asymptotic

path being contained in Uj .

We collect some of the above observations in the following theorem.

Theorem 13. Let f be a meromorphic function, and let {Uq, U\, ... , Up-\] be

a periodic cycle of Baker domains of f. Denote by z¡ the limit corresponding to

Uj, and define zp = z0. Then z¡ £ \J~Jq f~n(oo) for all j £ i°> 1, ••• ,P- 1}.
and Zj — oo for at least one j £ {0, 1, ... , p - 1}. If z¡ — oo, then zj+y is

an asymptotic value of f.

Corollary 1. If f has a cycle {l70 , f/i, ... , Up-\) of Baker domains such that
/" 11/0 —► oo, then oo is an asymptotic value of f. In particular, this is the case

if f has an invariant Baker domain.

Corollary 2. If f has a cycle {Uo, Ui, ... , Up-\} of Baker domains such that

/" 11/0 -/* oo, then f has a finite asymptotic value.

Corollary 1 can be found in [59, p. 75] for maps with polynomial Schwarzian

derivative.

Lemma 7 gives additional information about the asymptotic paths y7 and

also answers the question how fast f"p(z) approaches Zj for z £ U¡. In fact,

if Uj, Zj, and y7- are as above, then \z\llA < \fp(z)\ < \z\A for z g y; and
loglog]fp"(z)\ - 0(n) for z g D if z¡■ = oo. If Uj is simply connected

and Zj = oo, then we even have \z\/A < \fp(z)\ < A\z\ for z G y;- and

log \fpn(z)\ = 0(n) for z G D. Similar results may be obtained if z} ^ oo .

As already mentioned after Theorem 7, periodic cycles of Baker domains
need not contain a singularity of /~ ' . However, we have the following result.



172 WALTER BERGWEILER

Theorem 14. If f £ N or f £ F, then any periodic cycle of Baker domains

contains a point of sing(/_1).

This result was proved in [31] for / g N, but the proof extends to the

case that f £ F. The proof of Theorem 14 is fairly analogous to the proof

that functions in N (and F) do not have wandering domains. Therefore, it

seems likely that the conclusion of Theorem 14 remains valid for functions in

R. (This is certainly so for cycles of simply connected Baker domains, but in

the multiply connected case some modification of the argument will have to be

made.) For functions in 5* we have a stronger result; see Corollary 4 in §4.8.

One way to prove that cycles of Leau domains contain a singularity of /_1 is
based on the solution of Abel's functional equation (cf. [108, §7]). Hinkkanen

[83, Theorem 2] has shown that in certain cases this argument may also be used

to prove that Baker domains contain singularities of /_1.

4.8.    Classes of functions without Baker domains. Eremenko and Lyubich [70]

considered the class

B = {/ : sing(/_1) is bounded}

and proved the following result.

Theorem 15. If f £ E n B, then there does not exist a component U of F(f)

such that /"|i/ -+ oo as «-»oo.

Corollary 3. If f £ EC\B, then f does not have Baker domains.

We note that the conclusion of Corollary 3 does not hold in general for

/ G M n B. As an example, consider f(z) = 1/z - ez . As already mentioned

above, Baker, Kotus, and Lü [23, p. 606] proved that / has a Baker domain of

period 2, and it is easy to check that / G M n B. In this example, the critical
values of / accumulate at 0, which is also one of the limits corresponding to

the cycle of Baker domains.

The following result is a generalization of Corollary 3 to meromorphic func-
tions.

Theorem 16. Let f be a meromorphic function, and let {Uq, U\, ... , Up~.\}

be a periodic cycle of Baker domains of f. Then oo is in the derived set of

p-\

U/>(sing(/-')).
7=0

Corollary 4. Functions in S do not have Baker domains.

Combining Corollary 4 with Theorem 12, we see that the iteration of func-

tions in S is in many ways analogous to that of rational functions and may

thus be analyzed in a similar way.

For example, these results allow us to prove that the functions Xzez, Xez¡z,

and A tanz satisfy J = C for certain values of A, as mentioned in §2.2. In

fact, all these functions are in S and hence do not have wandering or Baker

domains by Theorem 12 and Corollary 4. For suitably chosen values of A we

can achieve that the points of sing(/_1) are either contained in 0~(oo), or

they are preperiodic but not periodic. In view of Theorem 7 this implies that
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there are no immediate attractive basins, no Leau domains, no Siegel discs, and

no Herman rings. Hence J = C for these A. The above argument also shows

that J(ez) = C.

For the proof of Theorem 16 we need the following lemma.

Lemma 8. Suppose f £ B, p > 1, and 0 £ 0~(oo). Then there exist a positive

constant R and a curve T connecting 0 and oo such that |/p(z)| < R for
Z£Y.

We show first that if r is sufficiently large, then there exists a curve T con-

necting oo with some point in C such that |/(z)| = r for z G T. In fact,

otherwise the components of f~x (D(0, r)) are bounded for arbitrarily large r.

Hence we can find r\ and r2 satisfying 0 < r\ < r2 and sing(/_1) c D(0, r\)

such that f~l(D(0, r2)) has a bounded component which contains at least two

components of f~l(D(0, r\)). It follows that f~l(D(0, r2)) contains a com-

ponent of /_1 (ann(rj, r2)), which is at least triply connected. By the Riemann-

Hurwitz formula (see, e.g., [27, §5.4]), this component contains a critical point

of / ; that is, ann(n , r2) contains a critical value of /, contradicting the choice
of r\ . Now we choose r sufficiently large and a corresponding curve T such

that dD(0, r) n 0"(oo) = 0. Then there exists R > 0 such that \f"~l(z)\ < R
for \z\ = r. We deduce that \fp(z)\< R for zeT. Increasing R if neces-
sary, we may assume that T connects 0 and oo . This completes the proof of
Lemma 8.

To prove Theorem 16, we assume without loss of generality that fnp\u0 —> °°

as n —► oo. Suppose that the conclusion of the theorem is false; that is, there

exists a punctured neighborhood Nq of oo which does not contain points of

Wjlo //'(smS(/-1)) • In particular, this implies that f £ B. We may assume

without loss of generality that 0 ^ 0~(oo) so that the hypotheses of Lemma 8

are satisfied. With R and T as in the conclusion of Lemma 8, we may suppose

that N0-{z: \z\ > R} . In addition, we choose R > |/(0)|.
Suppose now that w0 g i/o n N0, and define W\ = fp(wo). We may assume

that w\ £ Uq n JVo, because otherwise we may replace wq by fpn(wo) for a

sufficiently large n. We introduce the abbreviation g = fp . If R has been
chosen large enough, then the branch of g-1 satisfying g~l(wi) = wq may

be continued analytically in Nq. We define «o = logtt/o and U\ = log tí/1 for

arbitrary branches of the logarithm. Then <P = logog-1 o exp may be defined

as a single-valued function in the half-plane H = {z : Re z > \ogR} such that

O(mi) - Mo- Because \g(z)\ < R for z G T, we have <P(«) £ logT for all

u £ H and any branch of the logarithm. Hence <P(H) does not contain a disc
of radius greater than n so that

(8) |<D'(M)| <
B(Reu-\ogR)

where B is Bloch's constant. (We do not need any estimate for B here, just

Bloch's theorem that B > 0. Instead, we could also work with Landau's con-
stant.) In terms of g, we find that

\o>u„\\ > B\g(wWog\g(w)\-logR)
*SK   )l- n\w\
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Now we define wn = g"(wo) for n > 2, and we may assume that wn £ Uq n Nq

for all n . (Otherwise, we may replace Wq again by gm(wo) for a sufficiently

large m.) Then

\g'(w„)\>c
\g(w„)\ log \g(wn)\       \wn+\\ log \wn+x |

\Wn\ \Wn\

for some positive constant c and all n > 1. Hence

\(gn)'(w0)\

n-\

n s'^i)
7=0

n-\ n-l

^'»^^g'M»,,!
7=0

so that

(9)
\(g"Y(w0)\

wh
00

as n —> oo. We may assume that there exists a region Q containing Wo and

u/i such that g"(Q) C Uq n JVo for all « . We apply Lemma 7 for G = D -
\J™=ogn(Q) and note that T satisfies the hypotheses of this lemma. Hence

g"(Q) c 0(0, C\wn\) C D(wn, (C + l)\w„\) for some constant C by (5). It
follows that if we choose r > 0 such that the disc around wq of radius r is

contained in Q, then

l(g«)>o)l < £±i)Ki
by Schwarz's lemma. This contradicts (9) and completes the proof of Theorem

16.
The above proof uses some of the ideas introduced by Eremenko and Lyubich

[70] to prove Theorem 15. We sketch their proof of Theorem 15. First, we

define again Nq = {z : |z| > R}. Using the methods of Lemma 8, one can

show that the components of f~l(N0) are simply connected and unbounded

if R is sufficiently large. This implies that if D is a component of /"'(^o)

and if A - logD for some branch of the logarithm, then *P = logo/o exp is

a conformai map from A onto *¥(A). We define O = *F_1 and find again

that (8) holds. (Here we may replace Bloch's constant by Koebe's constant,

which is equal to \ , because 0 is univalent.) Suppose now that Wq g F and

fn(w0) r* oo. Define u0 = \ogw0. Similar to (9), we find that |(*F")'(m0)( -*

oo . On the other hand, if U is a sufficiently small neighborhood of wo . then

¥"(£/) cannot contain a disc of radius larger than n . This is a contradiction

to Koebe's (or Bloch's) theorem.

4.9. Completely invariant domains. Recall that a set 5 is called completely

invariant with respect to the meromorphic function / if O(S) c S. One may
ask in which cases a component of the Fatou set of a meromorphic function can

be completely invariant. Such components are also called completely invariant
domains.

It is classical that a rational function has at most two completely invariant

domains [27, Theorem 5.6.1]. Here the number two is best possible, as shown

by the simple example f(z) — z2.
For transcendental entire functions, we have the following result of Baker

[12].
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Theorem 17. If f £ E, then f has at most one completely invariant domain.

It is easy to find transcendental entire functions which have a completely

invariant domain, for example, f(z) = Xez has this property if 0 < A < \/e .

We mention the following question of Baker.

Question 12. Suppose f £ E has a completely invariant domain U. Do we

have F(f) = Ul

Some results supporting the conjecture that the answer is "yes" can be found

in [13, Theorem 2] and [70, §6]. In particular, it is shown in [70, Theorem 6]

that this is the case if / G S n E. We also note that Theorem 17 can be deduced
from [13, Theorem 2; 70, Lemma 11].

Less is known about completely invariant domains of meromorphic func-

tions. The example f(z) = tanz where J = R U {oo} and where the upper

and lower half-plane are completely invariant shows that there may be two com-

pletely invariant domains.

Question 13. Let / be a meromorphic function. Can / have more than two
completely invariant domains?

A partial result was obtained by Baker, Kotus, and Lü [23, Theorem 4.5].

Theorem 18. If f £ S, then f has at most two completely invariant domains.

If the answer to Question 13 is "no", one may also ask the following question.

Question 14. Suppose a meromorphic function / has two completely invariant

domains U\ and U2. Do we have F(f) = U\ U U21

5. Properties of the Julia set

5.1. Cantor sets and real Julia sets. For rational^functions the Julia set is often

a Cantor set. (By definition a closed subset of C is called a Cantor set if it is

perfect and totally disconnected.) For example, if A is not contained in the

Mandelbrot set, then J(z2 + X) is a Cantor set.

For f £ M it is also possible that /(/) is a Cantor set. In fact, it was

shown by Devaney and Keen [59, p. 62] that this is the case for /(z) = A tanz
if -1 < A < 1 and A ̂  0.

The following result, which is an immediate consequence of Theorem 9,

says that this cannot happen for transcendental entire functions [13, p. 278,
Corollary].

Theorem 19. If f £ E, then J(f) contains nondegenerate continua.

For rational functions it is possible that the Julia set is a circle or a straight

line; for example, J(\(z - 1/z)) = K U {oo} . This may also happen for / G M.
In fact, we have /(Atan z) = Ru {oo} if A > 1 ; see [59, pp. 60-61]. Fot f £ E
this is impossible, as shown by the following result of Töpfer [133, §3].

Theorem 20. If f g E, then J(f) does not contain isolated Jordan arcs.

Here, by definition, a Jordan arc is called isolated (in /) if there exists an

open set which contains the arc except for its endpoints but no other point
of J.



176 WALTER BERGWEILER

To prove Theorem 20, we suppose that such an arc exists and is parametrized

by y : [0, 1] —► C. By Theorem 4, the repelling periodic points are dense in

this arc. In view of Lemma 1 we may suppose that it contains a fixed point,

say, f(z\) = zj where Z\ = y(t\), t\ £ (0, 1). We may also assume that z\ is

not exceptional so that J = 0~(z{) by Lemma 4. Hence there exist to and t2

satisfying 0 < t0 < t\ < t2 < 1 and n > 1 such that /"(y(*o)) = f"(y(h)) = Z\
and f"(y(t)) # Z\ for t0 < t < t\ and tx < t < t2. We consider C =
f"(y([to, t2])). It follows from the assumption that y is isolated and from the

complete invariance of / that if t £ (to, t2), then there exists a neighborhood

N, of fn(y(t)) such that N, n J\C = 0. Because f"(y(t0)) = fn(y(t2)) = zi,
this is also true for t = to and t = t2. Hence C has a neighborhood N

satisfying N Ci J\C = 0. This implies that f(C) c C, since z\ £ C, J
is completely invariant, and C is connected. Hence 0+(C) c C. This is a

contradiction, because 0+(C)\/ contains at most the exceptional points of /
and is hence unbounded.

There are several other ways to see that J(f) = R U {oo} is impossible for

f £ E. One way is to observe that if this were the case, then the upper and

lower half-plane were completely invariant with respect to f2, contradicting

Theorem 17. Another way to see that J(f) = R U {oo} is impossible for f £ E

is to combine the complete invariance of J(f) with a result of Edrei [65, p.

279] which says that if all roots of f(z) = hn are real for some unbounded

sequence (hn) and an entire function /, then / is a polynomial of degree at

most 2. More generally, one may use the above arguments to prove that the

Julia set of an entire transcendental function cannot be contained in a finite set

of straight lines; see [9].

We remark that Baker, Kotus, and Lü [21, Theorem 2], using a result of

Cebotarev [43], have shown that if a transcendental meromorphic function /

satisfies J(f) = R U {oo} , then

where c, d, c„, an eR, e = ±l, c > 0, cn > 0, an ^ 0, and Y^=i Cn/a2 <

oo . For further details concerning meromorphic functions satisfying J c R U
{oo} we refer to [21].

5.2.    Points that tend to infinity. Eremenko [66] considered the set

/(/) = {z : f"(z) - oo as n -> oo}.

If / is a polynomial, then 1(f) is the immediate attractive basin of the super-
attracting fixed point oo. In this case, we easily find that

(10) J(f) = dl(f).

Eremenko's main result in [66] is the following theorem.

Theorem 21. // / G E, then 1(f) £ 0.

Eremenko also shows that /(/) n /(/) / 0. The proof of Theorem 21 is

based on the Wiman-Valiron theory about the behavior of entire functions near
points of maximum modulus; see for example [80, 135].
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Once Theorem 21 is known, it is not difficult to prove that (10) holds for

/ G E as well. In particular, if an entire function / does not have Baker

domains (for example, if / G B n E), then we have /(/) = /(/).

We mention two questions asked by Eremenko [66, pp. 343-344]. Suppose

f£E.

Question 15. Is every component of /(/) unbounded?

Question 16. Can every point in 1(f) be joined with oo by a curve in /(/)?

Clearly, a positive answer to Question 16 would imply that the answer to

Question 15 is also positive. _

Eremenko [66, Theorem 3] proved that /(/) does not have bounded compo-

nents, and he pointed out that a positive answer to Question 16 for a restricted

class of functions follows from the results of Devaney and Tangermann [61].

5.3. Cantor bouquets. Devaney and Krych [60] have studied the Julia set of

exponential functions. They find [60, p. 50] that if 0 < A < l/e, then J(Xez)
is a so-called Cantor bouquet. We will define Cantor bouquets below but sketch

the ideas only briefly and refer to [50, 52, 53, 56, 61] for more details.
For a positive integer N we consider the space Z^ of sequences of integers

between —N and N, that is,

I/v = {(s0,Si,s2,...):Sj£Z,\Sj\< N}.

There is a natural topology that makes Z/v into a Cantor set. The shift a : £# -*

Z/v is defined by cr(so, s\, s2 ,...) = (si, s2, s3,...). We call a closed subset

C^ of C a Cantora-bouquet of the meromorphic function / if f(C^) c Cn
and if there exists a homeomorphism h : X^ x [0, oo) —» Cn with the following

properties:

(i)   (n o h~l o / o h)(s, t)   =   a(s)   for all   t   £   [0, oo),  where   n   :

Ejv x [0, oo) —► Z/v is the projection, that is, n(s, t) — s;
(ii)  lim,-,«,^, t) = oo;

(iii)  lim„_oo f"(h(s, t)) = oo if t > 0.

A Cantor- /V-bouquet is similar to a Cantor set, but the components are curves
tending to oo instead of points.

Given a sequence C/v of Cantor-/V-bouquets satisfying Cn C Cn+i , the set

Coo = U cv
N=l

is called a Cantor bouquet.

We indicate how a Cantor bouquet can be obtained for EÁ(z) = Xez where

0 < A < l/e. Given N > 1, we choose c > 1 such that Ex(c) > c + (2N + l)n
and consider the rectangles

JR, = {z : 1 < Rez < c, (2j - \)n < Imz < (2j + l)n}

for j £ {-N, -N + 1, ... , N} . For each j we have

Ex(Rj) = {z:Xe< \z\ <Xec, |argz| <n}.
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Hence our choice of c implies that Rk c E^(Rj) if j, k £ {-N, -N + 1,

... ,N}. Define R = ljJL_/vRj and

AN = {z: E${z) £ R for all n > 1}.

From the above observations we can deduce that An is a Cantor set homeo-

morphic to Z# •
This construction yields the "endpoints" of the Cantor- /V-bouquet, that is,

the points in A(Ejv * {0}). To obtain the curves attached to it, choose a point

w £ AN and consider the set of all z G C such that E£(z) and E%(w) lie in

the same half-strip

Sj■■ = {z: 1 <Rez <c, (2j - l)n <Imz < (2j + l)n}

for all n > 0. This set then turns out to be a curve with the desired properties.

We omit the details and refer to the papers cited above.

The method is not restricted to exponential functions. In fact, it is shown

[61] that there exists a large class of functions, including, for example, sinz

and cos z , where the Julia set contains Cantor bouquets.

Besides the papers already mentioned we refer to [1, 41, 106, 120] for a

further discussion of Cantor bouquets.

6. Newton's method

6.1. The unrelaxed Newton method. Let g be a meromorphic function. New-

ton's method of finding the zeros of g consists of iterating the meromorphic
function / defined by

(") ^» = z-fi-
In fact, if C is a zero of g, then Ç, is an attracting fixed point of /, and vice

versa. The simple zeros of g correspond to the superattracting fixed points of

/•
Clearly, if z is close enough to C, then fn(z) converges to Ç as n —> oo . On

the other hand, /"(z) cannot tend to a zero of g if z G J(f), because /(/)

is completely invariant (under /). One may ask under which circumstances it

is possible that f"(z) fails to converge to zeros of g for some z £ F(f) and,

hence, for some open set of z-values. In view of Theorem 6 and because all

fixed points of / are attracting, this is possible only in one of the following
cases:

(i) There exists n > 0 such that f(z) is contained in a periodic cycle of
immediate attractive basins, Leau domains, or Siegel discs.  Here the
minimal period of the cycle is greater than 1 .

(ii) There exists n > 0 such that /"(z) is contained in a periodic cycle of
Herman rings.

(iii) There exists n > 0 such that f"(z) is contained in a periodic cycle of
Baker domains.

(iv)  z is contained in a wandering domain.

We shall restrict here to the case that g is entire and consider the case that g
is a polynomial first. Then / is rational, and cases (iii) and (iv) do not occur.
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It follows from a result of Shishikura [122] that (ii) does not occur either. More

precisely, Shishikura's result says that if a rational function has only one fixed

point which is repelling or has multiplier 1, then its Julia set is connected.

On the other hand, simple examples like g(z) = z3 - z + \/\[2 where 0

is a superattracting periodic point of minimal period 2 for / show that case

(i) can occur. From Theorem 7 and the fact that all finite fixed points of

/ are attracting we can deduce that (i) cannot occur if f(z) converges for

all z G sing(/-1). (Theorem 7 also shows that (ii) does not occur if /"(z)

converges for all z G sing(/_1).) Because f'(z) = g(z)g"(z)/g'(z)2 and oo is

a fixed point of /, we obtain the following result.

Theorem 22. Let g be a polynomial, and let f be defined by (11). Denote by
z\, z2, ... , zm the zeros of g" that are not zeros of g'. If f"(zj) converges for

all j £ {1, 2, ... , m}, then f(z) converges to zeros of g for all z £ F(f).

The proof of Theorem 22 we have sketched above depends on Theorem 11.

It is possible, however, to give a more elementary proof of Theorem 22. In fact,

this result can be deduced from the work of Fatou [71, §30-31] and Julia [89,

§59] (see also Smale [123, pp. 99-100]). As an example of where Theorem 22

applies, we mention real polynomials with only real zeros [26].

For a further discussion of Newton's method for polynomials we refer to

[77, 97, 132]. If g is transcendental, then so is /, except when g = peq for

polynomials p and q . Newton's method for functions of this form has been
studied in detail in [78].

We now consider the case that g and / are transcendental. Examples in [32]

show that not only (i) can occur, but (iii) and (iv) can also occur. In fact, it was

shown that case (iii) always occurs if g tends to zero in some sector sufficiently

fast, for example, if g is of the form g(z) = h(z)exp(-zk) for some positive

integer k and some entire function h of order less than k which does not have

zeros in | arg z| < e for some e > 0. An example where Newton's method leads

to wandering domains is given by g(z) — exp (¿7 JQZ cos2(eu) du) ; compare

[32].
It is of interest to find classes of entire functions for which Newton's method

behaves similarly to that for polynomials. In [31], Newton's method for func-
tions g of the form

(12) g(z) = ['p(t)e«M dt + c
Jo

where p and q are polynomials and where c is a constant was studied. If g

has this form, then f £ N and hence does not have wandering domains by

Theorem 12. Also, every cycle of Baker domains contains a singularity of /_1
by Theorem 14. Moreover, it was shown in [31] that if g and / are given by

(12) and (11), then / does not have finite asymptotic values. Hence we have
the following result.

Theorem 23. // g has the form (12) but is not of the form g(z) = eaz+b where

a and b are constant, then the conclusion of Theorem 22 holds.

The case g(z) = eaz+b has to be excluded because then f(z) = z - \/a, but

we always assumed that / is nonlinear. In fact, the conclusion of Theorem 23
is false in this case.
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Another class of entire functions where Newton's method does not lead to

wandering domains are solutions of differential equations of the form g" +

pg — 0 where p is a polynomial. In this case, we have f £ R.

It seems likely that results of the type of Theorem 23 hold for a much wider

class of functions. For instance, one may ask the following question which is
related to Questions 5 and 10.

Question 17. Let g be a meromorphic function, and let / be defined by (11).

Does the convergence of /"(z) for all z G sing(/_1) imply the convergence of
/"(z) (to zeros of g) for all z G F(f)l

6.2. The relaxed Newton method. As a generalization of Newton's method,

one may consider the relaxed Newton method, which is given by iteration of

(13) fh(z) = z-h
g'(z)

where g is meromorphic and h £ C, |A — 1| < 1 . Again, if C is a zero of

g, then £ is an attracting fixed point of /. For h ^ 1, however, Ç is not

superattracting, but f'(Q — I - h/m if C is a zero of g of multiplicity m .

Clearly, the case h = 1 corresponds to the unrelaxed Newton method con-

sidered in the previous section. Some of the results mentioned there extend

to this more general case. For example, if g is of the form (12) and if f is

defined by (13), then fh does not have wandering domains, and every cycle of

Baker domains of f„ contains a singularity of fh~x ; see [31].

The relaxed Newton method may be viewed as a discretization of the differ-
ential equation

This differential equation has been studied in a number of papers; compare the

survey by Jongen, Jonker, and Twilt [88]. Similar to the immediate attractive

basins with respect to the iteration of fn, there are basins of attraction with

respect to the differential equation attached to the zeros of g. For a zero £ of

g, we denote by A*(h, £) the immediate basin of attraction of £ with respect

to the iteration of /,, that is, the component of F(fh) that contains £, and
by A(h, £) the basin of attraction, that is, A(h, £) = {z : lim„_oo f¡¡(z) = £} •

Clearly, A*(h, £) c A(h, £). By B(Q we denote the basin corresponding to the
differential equation; that is, B(Q is the set of all w £<C such that there exists

a solution z : [a, b) -* C of (14) satisfying z(a) = w and \imt^b z(t) = £.

Considering constant solutions of (14), we see that always £ £ B(Q , provided
we define g(Q/g'(Q - 0 for multiple zeros £ of g.

We remark that if g is rational, then

(15) meas(c\      (J      5(C)) =0,

\       ÍC : *(O=0} /

where meas(-) denotes Lebesgue measure on C, while C\{Jir■ g(n=o\¿(h, Ç)

may contain open sets, as already pointed out in §6.1. It is of interest to study

to what extent A(h, Ç) approximates B(Q if h -» 0. For rational functions
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g and real values of h this has been studied in detail in [76] and [107]. For

example, it follows from the results obtained there that

(16) lim meas [ C\      M      A*{h,Ç)\=0.
*-° V       {C: 8(0=0} )

We also mention [73], where it is proved that if g is a polynomial, then

meas(c\      (J     A(h,o)=0
\     {C : ¿r(C)=o} /

for certain small (not necessarily real) values of h .

If g is transcendental, then ( 15) and ( 16) need not be true. A simple example

is provided by g = peq if p and q are polynomials, q nonconstant. More

generally, it was shown in [32] that (15) and (16) do not hold if g tends to zero

in a suitable sector sufficiently fast. On the other hand, we have the following

result proved in [32].

Theorem 24. Lei g be a meromorphic function. Suppose that sing(g_1) is a

discrete subset of C and that 0 is not an asymptotic value of g. Then (15) and

(16) hold.

It seems likely that the conclusion of Theorem 24 remains valid for more

general classes of functions.

Question 18. Is the hypothesis on the discreteness of sing(^_1) necessary in

Theorem 24?

7. Miscellaneous topics

In this paper, we have concentrated on describing some results in iteration

theory that hold for all entire or meromorphic functions or at least for large

classes of functions. Of course, it is also very important to consider specific

examples. Already Fatou [72, pp. 358-369] studied the examples f(z) - z +

1 + e~z and f(z) = h sin z + a (where 0 < h < 1 and a £ R) in detail, and

Töpfer [133, §§5-6] described the Julia sets of the sine and cosine function.

A particularly important topic is to consider families of functions that depend

on a parameter and to study how the iterative behavior varies as the parameter

changes. In the iteration theory of rational functions, the family of quadratic

polynomials and its bifurcation diagram, the Mandelbrot set, has been the ob-

ject of much research. Among the transcendental functions, it is probably the

exponential family {Xez : A G C\{0}} that has received most attention. We

have already mentioned some results in §5.3.

Define Ex(z) — Xez . By Theorem 12 and Corollary 3, Ex does not have wan-

dering or Baker domains. Hence, in view of Theorem 7, the iterative behavior

of Ex is largely determined by the forward orbit of 0. In particular, Ex has

at most one periodic cycle of immediate attractive basins, and if such a cycle

exists, then it must contain 0. If E"(0) —> oo or if the sequence (E"(0))n>o is

preperiodic but not periodic, then J(Ex) = C.
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In [25; 58; 70, §9] the iteration of Ex has been thoroughly investigated; for

example, the sets

D„ = {A : Ex has an attracting periodic cycle of minimal period n}

have been studied in detail there. We omit these results here but just mention

one open question.

Question 19. Is U^li Dn a dense subset of C?

This is an analogue to a well-known conjecture of Fatou [71, §31, p. 73]

concerning rational functions. Some partial results concerning Question 19 can

be found in [50, 51, 137, 140].
Of course, there are many other families that can be studied. For example,

the functions
i,              ^z             a       eZ
A tan z,- , and -r—-

ez _e-z lez + e-z

were studied in [59, §§2-4] for certain parameter values A. We also mention

[64, 85, 86], where numerical studies concerning the iteration of transcendental

meromorphic functions have been carried out.

There are many topics that have been left out. For example, we have not

discussed ergodic problems. There are many papers on this topic for rational

maps; see [69, Chapter 3] for a survey. Much less work has been done in this

area for transcendental functions, but we mention [74, 101, 102, 115], which

address these questions for the exponential function.

Another topic we have omitted is the investigation of the area and the Haus-

dorff dimension of Julia sets of transcendental functions. We refer to [70, §7;

103; 124; 126] for results in this direction.

Acknowledgment

I would like to thank Norbert Terglane for many useful discussions and valu-

able suggestions. I am also grateful to Alexander Eremenko, Aimo Hinkkanen,

and Steffen Rohde for some helpful comments. Finally, I am indebted to two

referees and to the editor, Richard Palais, for a number of helpful suggestions

that led to an improvement of this paper.

References

1. J. M. Aarts and L. Oversteegen, The geometry of Julia sets, Trans. Amer. Math. Soc. 338

(August 1993).

2. L. V. Ahlfors, Zur Theorie der Überlagerungsflächen, Acta Math. 65 (1935), 157-194.

3. _, Conformai invariants, McGraw-Hill, New York, 1973.

4. I. N. Baker, Fixpoints and iterates of entire functions, Math. Z. 71 (1959), 146-153.

5. _, Some entire functions with fixpoints of every order, J. Australian Math. Soc. 1

(1959/60), 203-209.

6. _, The existence of fixpoints of entire functions, Math. Z. 73 (1960), 280-284.

7. _, Multiply connected domains of normality in iteration theory, Math. Z. 81 (1963),

206-214.



ITERATION OF MEROMORPHIC FUNCTIONS 183

8. _, Fixpoints of polynomials and rational functions, J. London Math. Soc. (2) 39

(1964), 615-622.

9. _, Sets of non-normality in iteration theory, J. London Math. Soc. (2) 40 (1965),

499-502.

10. _, Repulsive fixpoints of entire functions, Math. Z. 104 (1968), 252-256.

11. _, Limit functions and sets of non-normality in iteration theory, Ann. Acad. Sei. Fenn.

Ser. A I Math. 467(1970).

12. _, Completely invariant domains of entire functions, Mathematical Essays Dedicated

to A. J. Macintyre, (H. Shankar, ed.), Ohio Univ. Press, Athens, Ohio, 1970, pp. 33-35.

13. _, The domains of normality of an entire function, Ann. Acad. Sei. Fenn. Ser. A I

Math. 1 (1975), 277-283.

14. _, An entire function which has wandering domains, J. Austral. Math. Soc. Ser. A 22

(1976), 173-176.

15. _, The iteration of polynomials and transcendental entire functions, J. Austral. Math.
Soc. Ser. A 30 (1981), 483-495.

16. _, Wandering domains in the iteration of entire functions, Proc. London Math. Soc.

(3)49(1984), 563-576.

17. _, Some entire functions with multiply-connected wandering domains, Ergodic Theory

Dynamical Systems 5 (1985), 163-169.

18. _, Iteration of entire functions: an introductory survey, Lectures on Complex Analysis,

World Scientific, Singapore, New Jersey, London, and Hong Kong, 1987, pp. 1-17.

19. -, Wandering domains for maps of the punctured plane, Ann. Acad. Sei. Fenn. Ser. A
I Math. 12(1987), 191-198.

20. _, Infinite limits in the iteration of entire functions, Ergodic Theory Dynamical
Systems 8 (1988), 503-507.

21. I. N. Baker, J. Kotus, and Y. Lü, Iterates of meromorphic functions. I, Ergodic Theory
Dynamical Systems 11 (1991), 241-248.

22. -, Iterates of meromorphic functions II: Examples of wandering domains, J. London
Math. Soc. (2) 42 (1990), 267-278.

23. _, Iterates of meromorphic functions III: Preperiodic domains,  Ergodic Theory
Dynamical Systems 11 (1991), 603-618.

24. -, Iterates of meromorphic functions IV: Critically finite functions, Results Math. 22

(1992), 651-656.

25. -, Iteration of exponential functions, Ann. Acad. Sei. Fenn. Ser. A I Math. 9 (1984),
49-77.

26. B. Barna, Über die Divergenzpunkte des Newtonschen Verfahrens zur Bestimmung von

Wurzeln von algebraischen Gleichungen II, Publ. Math. Debrecen 4 (1955/56), 384-397.

27. A. F. Beardon, Iteration of rational functions, Springer, New York, Berlin, and Heidelberg,
1991.

28. W. Bergweiler, On the number of fix-points of iterated entire functions, Arch. Math. 55

(1990), 558-563.

29. -, Periodic points of entire functions : proof of a conjecture of Baker, Complex Variables
Theory Appl. 17 (1991), 57-72.

30. -, On the existence of fixpoints of composite meromorphic functions, Proc. Amer.
Math. Soc. 114 (1992), 879-880.

31. -, Newton's method and a class of meromorphic functions without wandering domains,
Ergodic Theory Dynamical Systems (to appear).

32. W. Bergweiler, F. von Haeseler, H. Kriete, H.-G. Meier, and N. Terglane, Newton's

method for meromorphic functions, Proceedings of the conference "Complex analysis and
its applications", Hong Kong (to appear).

33. W. Bergweiler, M. Haruta, H. Kriete, H.-G. Meier, and N. Terglane, On the limit functions
of iterates in wandering domains, Ann. Acad. Sei. Fenn. Ser. A I Math, (to appear).



184 WALTER BERGWEILER

34. W. Bergweiler and S. Rohde, Omitted values in domains of normality, preprint.

35. W. Bergweiler and N. Terglane, Weakly repelling fixpoints and the connectivity of wandering

domains, preprint.

36. P. Bhattacharyya, Iteration of analytic functions, Ph.D. thesis, Univ. of London, 1969.

37. P. Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc.

(N.S.) 11 (1984), 85-141.

38. L. E. Böttcher, Beiträge zu der Theorie der Iterationsrechnung, Inaugural dissertation,

Leipzig, 1898.

39. D. A. Brannan and W. K. Hayman, Research problems in complex analysis, Bull. London

Math. Soc. 21 (1989), 1-35.

40. H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1967), 103-141.

41. W. D. Bula and L. Oversteegen, A characterization of smooth Cantor bouquets, Proc. Amer.

Math. Soc. 108 (1990), 529-534.

42. L. Carleson and T. W. Gamelin, Complex dynamics, Springer, New York, Berlin, and

Heidelberg, 1993.

43. N. G. Cebotarev, Über die Realität von Nullstellen ganzer transzendenter Funktionen, Math.

Ann. 99(1928), 660-686.

44. C.-T. Chuang, A simple proof of a theorem of Fatou on the iteration and fix-points of

transcendental entire functions, Analytic Functions of One Complex Variable, (C.-C. Yang

and C.-T. Chuang, eds.), Contemp. Math., vol. 48, Amer. Math. Soc., Providence, RI,

1985, pp. 65-69.

45. J. Clunie, The composition of entire and meromorphic functions, Mathematical Essays

Dedicated to A. J. Macintyre (H. Shankar, ed.), Ohio Univ. Press, Athens, Ohio, 1970,

pp. 75-92.

46. H. Cremer, Über die Iteration rationaler Funktionen, Jahresber. Deutsche Math.-Ver. 33

(1925), 185-210.

47. _, Zum Zentrumsproblem, Math. Ann. 98 (1926), 151-163.

48. _, Über die Schrödersche Funktionalgleichung und das Schwarzsehe Eckenabbil-

dungsproblem, Ber. Verh. Sachs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 84 (1932), 291-324.

49. _, Über die Häufigkeit der Nichtzentren, Math. Ann. 115 (1938), 573-580.

50. R. L. Devaney, Julia sets and bifurcation diagrams for exponential maps, Bull. Amer. Math.

Soc. (N.S.) 11 (1984), 167-171.

51. _, Structural instability of exp(z), Proc. Amer. Math. Soc. 94 (1985), 545-548.

52. _, Dynamics of entire maps, Dynamical Systems and Ergodic Theory, Banach Center

Publ., vol. 23, Polish Scientific Publishers, Warsaw, 1989, pp. 221-228.

53. _, An introduction to chaotic dynamical systems,  second ed.,  Addison-Wesley,

Redwood City, 1989.

54. -, Film and video as a research tool, Math. Intelligencer 11 (1989), 33-38.

55. -, Dynamics of simple maps, Chaos and Fractals. The Mathematics Behind the

Computer Graphics (R. L. Devaney and L. Keen, eds.), Amer. Math. Soc, Providence,

RI, 1989, pp. 1-24.

56. _, ez : Dynamics and bifurcations, Internat. J. Bifurcation Chaos 1 (1991), 287-308.

57. R. L. Devaney and M. B. Durkin, The exploding exponential and other chaotic bursts in

complex dynamics, Amer. Math. Monthly 98 (1991), 217-232.

58. R. L. Devaney, L. R. Goldberg, and J. Hubbard, Dynamical approximation to the

exponential map by polynomials, Preprint MSRI 10019-86, Mathematical Sciences
Research Institute, Berkeley, CA, 1986.

59. R. L. Devaney and L. Keen, Dynamics of meromorphic maps with polynomial Schwarzian

derivative, Ann. Sei. École Norm. Sup. (4) 22 (1989), 55-81.

60. R. L. Devaney and M. Krych, Dynamics of exp(z), Ergodic Theory Dynamical Systems 4

(1984), 35-52.



ITERATION OF MEROMORPHIC FUNCTIONS 185

61. R. L. Devaney and F. Tangermann, Dynamics of entire functions near the essential

singularity, Ergodic Theory Dynamical Systems 6 ( 1986), 489-503.

62. A. Douady and J. H. Hubbard, Itération des polynômes quadratiques complexes, C. R.

Acad. Sei. Paris Sér. I 294 (1982), 123-126.

63. _, Étude dynamique des polynômes complexes. I & II, Publ. Math. Orsay 84-02 ( 1984)
& 85-04 (1985).

64. N. Douai, J. L. Howland, and R. Vaillancourt, Selective solutions of transcendental

equations, Computers Math. Appl. 22 (1991), 61-76.

65. A. Edrei, Meromorphic functions with three radially distributed values, Trans. Amer. Math.

Soc. 78(1955), 276-293.

66. A. E. Eremenko, On the iteration of entire functions, Dynamical Systems and Ergodic

Theory, Banach Center Publ., vol. 23, Polish Scientific Publishers, Warsaw, 1989, pp.

339-345.

67. A. E. Eremenko and M. Yu. Lyubich, Iterates of entire functions, Soviet Math. Dokl. 30

(1984), 592-594; translation from Dokl. Akad. Nauk. SSSR 279 (1984).

68. _, Examples of entire functions with pathological dynamics, J. London Math. Soc. (2)

36(1987), 458-468.

69. _, The dynamics of analytic transforms, Leningrad Math. J. 1 (1990), 563-634.

70. _, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier
(Grenoble) 42 (1992), 989-1020.

71. P. Fatou, Sur les équations fonctionelles, Bull. Soc. Math. France 47 (1919), 161-271; 48

(1920), 33-94, 208-314.

72. _, Sur l'itération des fonctions transcendantes entières, Acta Math. 47 (1926), 337-

360.

73. M. Flexor and P. Sentenac, Algorithmes de Newton généralisés, C. R. Acad. Sei. Paris Sér.

I Math. 308 (1989), 445-448.

74. E. Ghys, L. R. Goldberg, and D. P. Sullivan, On the measurable dynamics of z —► ez ,

Ergodic Theory Dynamical Systems 5 (1985), 329-335.

75. L. R. Goldberg and L. Keen, A finiteness theorem for a dynamical class of entire functions,

Ergodic Theory Dynamical Systems 6 (1986), 183-192.

76. F. von Haeseler and H. Kriete, The relaxed Newton's method for polynomials, preprint.

77. F. von Haeseler and H.-O. Peitgen, Newton's method and complex dynamical systems, Acta

Appl. Math. 13 (1988), 3-58; Newton's method and dynamical systems (H.-O. Peitgen, ed.),
Kluwer Academic Publishers, Dordrecht, 1989, pp. 3-58.

78. M. Haruta, The dynamics of Newton's method on the exponential function in the complex
domain, Ph.D. thesis, Boston Univ., 1992.

79. W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.

80. _, The local growth of power series: a survey of the Wiman-Valiron method, Canad.

Math. Bull. (3) 17 (1974), 317-358.

81. M. Herman, Exemples de fractions rationelles ayant une orbite dense sur la sphère de

Riemann, Bull. Soc Math. France 112 (1984), 93-142.

82. -, Are there critical points on the boundary of singular domains'!, Comm. Math. Phys.
99(1985), 593-612.

83. A. Hinkkanen, Iteration and the zeros of the second derivative of a meromorphic function,

Proc. London Math. Soc (3) 65 (1992), 629-650.

84. _, On the size of Julia sets, preprint.

85. J. L. Howland and R. Vaillancourt, Attractive cycles in the iteration of meromorphic

functions, Numer. Math. 46 (1985), 323-337.

86. J. L. Howland, A. Thompson, and R. Vaillancourt, On the dynamics of a meromorphic

function, Appl. Math. Notes 15 (1990), 7-37.



186 WALTER BERGWEILER

87. G. Jank and L. Volkmann, Einführung in die Theorie der ganzen und meromorphen

Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser, Basel, Boston, and

Stuttgart, 1985.

88. H. Th. Jongen, P. Jonker, and F. Twilt, The continuous, desingularized Newton method

for meromorphic functions, Acta Appl. Math. 13 (1988), 82-121; Newton's method and

dynamical systems (H.-O. Peitgen, ed.), Kluwer Academic Publishers, Dordrecht 1989,

pp. 82-121.

89. G. Julia, Sur l'itération des fonctions rationelles, J. Math. Pures Appl. (7)4(1918), 47-245.

90. _, Sur des problèmes concernant l'itération des fonctions rationelles, C. R. Acad. Sei.

Paris Sér. I. Math. 166 (1918), 153-156.

91. L. Keen, Dynamics of holomorphic self-maps of C* , Holomorphic Functions and Moduli.

I (D. Drasin, C. J. Earle, F. W. Gehring, I. Kra, and A. Marden, eds.), Springer, New York,

Berlin, and Heidelberg, 1988.

92. _, Topology and growth of a special class of holomorphic self-maps of C* , Ergodic

Theory Dynamical Systems 9 (1989), 321-328.

93._Julia sets, Chaos and Fractals. The Mathematics Behind the Computer Graphics

(R. L. Devaney and L. Keen, eds.), Amer. Math. Soc, Providence, RI, 1989, pp. 57-74.

94. J. Kotus, Iterated holomorphic maps of the punctured plane, Dynamical Systems, (A. B.

Kurzhanski and K. Sigmund, eds.), Lecture Notes Econom. and Math. Systems, vol. 287,

Springer, Berlin, Heidelberg, and New York, 1987, pp. 10-29.

95._The domains of normality of holomorphic self-maps of C* , Ann. Acad. Sei. Fenn.

Ser. A I Math. 15 (1990), 329-340.

96. B. Krauskopf, Convergence of Julia sets in the approximation of Xez by X(\ + j)d ,

Internat. J. Bifurcation Chaos (to appear).

97. H. Kriete, On the efficiency of relaxed Newton's method, Proceedings of the conference

"Complex analysis and its applications", Hong Kong (to appear).

98. S. Lattes, Sur l'itération des substitutions rationelles et les fonctions de Poincaré, C. R. Acad.

Sei. Paris Ser. I Math. 166 (1918), 26-28 (Errata: p. 88).

99. O. Lehto and K. I. Virtanen, Quasikonforme Abbildungen, Springer, Berlin, Heidelberg,

and New York, 1965.

100. M. Yu. Lyubich, The dynamics of rational transforms:  the topological picture, Russian

Math. Surveys 41 (1986), 43-117; translation from Uspekhi Mat. Nauk. 41 (1986), 35-95.

101. _, Measurable dynamics of the exponential, Soviet Math. Dokl. 35 (1987), 223-226;
translation from Dokl. Akad. Nauk. SSSR 292 (1987).

102. _, Measurable dynamics of the exponential, Sib. Math. J. 28 (1988), 780-793;
translation from Sib. Mat. Zh. 28 (1987), 111-127.

103. C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions, Trans. Amer.

Math. Soc. 300 (1987), 329-342.

104. P. M. Makienko, Iterates of analytic functions of C* , Soviet Math. Dokl. 36 (1988), 418-
420; translation from Dokl. Akad. Nauk. SSSR 297 (1987).

105. R. M. May, Simple mathematical models with very complicated dynamics, Nature 261

(1976), 459-467.

106. J. C. Mayer, An explosion point for the set ofendpoints of the Julia set of X exp(z), Ergodic

Theory Dynamical Systems 10 (1990), 177-183.

107. H.-G. Meier,  The relaxed Newton-iteration for rational functions:   the limiting case,

Complex Variables Theory Appl. 16 (1991), 239-260.

108. J. Milnor, Dynamics in one complex variable: introductory lectures, Stony Brook Institute

for Mathematical Sciences, preprint 1990/5.

109. M. Misiurewicz, On iterates of ez , Ergodic Theory and Dynamical Systems 1 (1981),

103-106.

110. P. Montel, Leçons sur les familles normales de fonctions analytiques et leurs applications,
Gauthiers-Villars, Paris, 1927.

111. R. Nevanlinna, Analytic functions, Springer, Berlin, Heidelberg, and New York, 1970.



ITERATION OF MEROMORPHIC FUNCTIONS 187

112. H.-O. Peitgen and P. H. Richter, The beauty of fractals, Springer, Berlin, Heidelberg, New

York, and Tokyo, 1986.

113. R. Pérez-Marco, Solution complète au problème de Siegel de linéarisation d'une application

holomorphe au voisinage d'un point fixe (d'après J.-C. Yoccoz), Sém. Bourbaki 753 (1992).

114. H. Radström, On the iteration of analytic functions, Math. Scand. 1 (1953), 85-92.

115. M. Rees, The exponential map is not recurrent, Math. Z. 191 (1986), 593-598.

116. J. F. Ritt, On the iteration of rational functions, Trans. Amer. Math. Soc 21 (1920), 348-
356.

117. P. C. Rosenbloom, L'itération des fonctions entières, C. R. Acad. Sei. Paris Sér. I Math.

227(1948), 382-383.

118. D. Ruelle, Elements of differentiable dynamics and bifurcation theory, Academic Press,

Boston, 1989.

119. C. L. Siegel, Iteration of analytic functions, Ann. of Math. (2) 43 (1942), 607-612.

120. M. Viana da Silva, The differentiability of the hairs of exp(z), Proc. Amer. Math. Soc. 103

(1988), 1179-1184.

121. M. Shishikura, On the quasi-conformal surgery of rational functions, Ann. Sei. École Norm.

Sup. (4)20(1987), 1-29.

122. _, The connectivity of the Julia set and fixed point, preprint IHES/M/90/37, Institut

des Hautes Études Scientifiques, 1990.

123. S. Smale, On the efficiency of algorithms of analysis, Bull. Amer. Math. Soc. (N.S.) 13

(1985), 87-121.

124. G. M. Stallard, Entire functions with Julia sets of zero measure, Math. Proc. Cambridge

Philos. Soc. 108 (1990), 551-557.

125. _, A class of meromorphic functions with no wandering domains, Ann. Acad. Sei. Fenn.

Ser. A I Math. 16 (1991), 211-226.

126. _,  The Hausdorff dimension of Julia sets of entire functions,  Ergodic Theory

Dynamical Systems 11 (1991), 769-777.

127. N. Steinmetz, On Sullivan's classification of periodic stable domains, Complex Variables

Theory Appl. 14 (1990), 211-214.

128. _, Rational iteration, Walter de Gruyter, Berlin, 1993.

129. D. Sullivan, Itération des fonctions analytiques complexes, C. R. Acad. Sei. Paris Sér. I

Math. 294(1982), 301-303.

130. _, Quasiconformal homeomorphisms and dynamics I. Solution of the Fatou-Julia

problem on wandering domains, Ann. of Math. (2) 122 (1985), 401-418.

131. _,   Quasiconformal homeomorphisms  and dynamics  III.   Topological conjugacy

classes of analytic endomorphisms, preprint IHES/M/83/1, Institut des Hautes Etudes

Scientifiques, 1983.

132. S. Sutherland, Finding roots of complex polynomials with Newton's method, Ph.D. thesis,

Boston Univ., 1989.

133. H.Töpfer, Über die Iteration der ganzen transzendenten Funktionen, insbesondere von sinz

und cosz , Math. Ann. 117 (1939), 65-84.

134. _, Komplexe Iterationsindizes ganzer und rationaler Funktionen, Math. Ann. 121

(1949), 191-222.

135. G. Valiron, Lectures on the general theory of integral functions, Edouard Privat, Toulouse,

1923.

136. C.-C. Yang and J.-H. Zheng, Further results on fixpoints and zeros of entire functions, Trans.

Amer. Math. Soc. (to appear).

137. Zhuan Ye, Structural instability of exponential functions, preprint.

138. J.-C. Yoccoz, Théorème de Siegel, nombres de Brjuno et polynômes quadratiques, preprint,
1987.



188 WALTER BERGWEILER

139. _, Linéarisation des germes de difféomorphismes holomorphes de (C, 0), C. R. Acad.

Sei. Paris Sér. I Math. 306 (1988), 55-58.

140. J. Zhou and Z. Li, Structural instability of the mapping z —» Aexp(z) (X > e_1), Sei.
China Ser. A 30 (1989), 1153-1161.

Lehrstuhl II für Mathematik, RWTH Aachen, D-52056 Aachen, Germany

E-mail address : sfO 10be@dacth 11 .bitnet


