Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Iteration of meromorphic functions


Author: Walter Bergweiler
Journal: Bull. Amer. Math. Soc. 29 (1993), 151-188
MSC (2000): Primary 30D05; Secondary 58F23
DOI: https://doi.org/10.1090/S0273-0979-1993-00432-4
MathSciNet review: 1216719
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. M. Aarts and L. Oversteegen, The geometry of Julia sets, Trans. Amer. Math. Soc. 338 (August 1993). MR 1182980 (93j:30021)
  • [2] L. V. Ahlfors, Zur Theorie der Überlagerungsflächen, Acta Math. 65 (1935), 157-194. MR 1555403
  • [3] -, Conformal invariants, McGraw-Hill, New York, 1973.
  • [4] I. N. Baker, Fixpoints and iterates of entire functions, Math. Z. 71 (1959), 146-153. MR 0107015 (21:5743)
  • [5] -, Some entire functions with fixpoints of every order, J. Australian Math. Soc. 1 (1959/60), 203-209. MR 0114007 (22:4838a)
  • [6] -, The existence of fixpoints of entire functions, Math. Z. 73 (1960), 280-284. MR 0114008 (22:4838b)
  • [7] -, Multiply connected domains of normality in iteration theory, Math. Z. 81 (1963), 206-214. MR 0153842 (27:3803)
  • [8] -, Fixpoints of polynomials and rational functions, J. London Math. Soc. (2) 39 (1964), 615-622. MR 0169989 (30:230)
  • [9] -, Sets of non-normality in iteration theory, J. London Math. Soc. (2) 40 (1965), 499-502. MR 0180668 (31:4899)
  • [10] -, Repulsive fixpoints of entire functions, Math. Z. 104 (1968), 252-256. MR 0226009 (37:1599)
  • [11] -, Limit functions and sets of non-normality in iteration theory, Ann. Acad. Sci. Fenn. Ser. A I Math. 467 (1970). MR 0264071 (41:8667)
  • [12] -, Completely invariant domains of entire functions, Mathematical Essays Dedicated to A. J. Macintyre, (H. Shankar, ed.), Ohio Univ. Press, Athens, Ohio, 1970, pp. 33-35. MR 0271344 (42:6227)
  • [13] -, The domains of normality of an entire function, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), 277-283. MR 0402044 (53:5867)
  • [14] -, An entire function which has wandering domains, J. Austral. Math. Soc. Ser. A 22 (1976), 173-176. MR 0419759 (54:7777)
  • [15] -, The iteration of polynomials and transcendental entire functions, J. Austral. Math. Soc. Ser. A 30 (1981), 483-495. MR 621564 (82g:30043)
  • [16] -, Wandering domains in the iteration of entire functions, Proc. London Math. Soc. (3) 49 (1984), 563-576. MR 759304 (86d:58066)
  • [17] -, Some entire functions with multiply-connected wandering domains, Ergodic Theory Dynamical Systems 5 (1985), 163-169. MR 796748 (86i:30031)
  • [18] -, Iteration of entire functions: an introductory survey, Lectures on Complex Analysis, World Scientific, Singapore, New Jersey, London, and Hong Kong, 1987, pp. 1-17. MR 996465 (90d:30072)
  • [19] -, Wandering domains for maps of the punctured plane, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), 191-198. MR 951969 (89g:30046)
  • [20] -, Infinite limits in the iteration of entire functions, Ergodic Theory Dynamical Systems 8 (1988), 503-507. MR 980793 (90e:58070)
  • [21] I. N. Baker, J. Kotus, and Y. Lü, Iterates of meromorphic functions. I, Ergodic Theory Dynamical Systems 11 (1991), 241-248. MR 1116639 (92m:58113)
  • [22] -, Iterates of meromorphic functions II: Examples of wandering domains, J. London Math. Soc. (2) 42 (1990), 267-278. MR 1083445 (92m:58114)
  • [23] -, Iterates of meromorphic functions III: Preperiodic domains, Ergodic Theory Dynamical Systems 11 (1991), 603-618. MR 1145612 (92m:58115)
  • [24] -, Iterates of meromorphic functions IV: Critically finite functions, Results Math. 22 (1992), 651-656. MR 1189754 (94c:58166)
  • [25] -, Iteration of exponential functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 49-77. MR 752391 (86d:58065)
  • [26] B. Barna, Über die Divergenzpunkte des Newtonschen Verfahrens zur Bestimmung von Wurzeln von algebraischen Gleichungen II, Publ. Math. Debrecen 4 (1955/56), 384-397. MR 0078956 (18:5f)
  • [27] A. F. Beardon, Iteration of rational functions, Springer, New York, Berlin, and Heidelberg, 1991. MR 1128089 (92j:30026)
  • [28] W. Bergweiler, On the number of fix-points of iterated entire functions, Arch. Math. 55 (1990), 558-563. MR 1078277 (91k:30063)
  • [29] -, Periodic points of entire functions: proof of a conjecture of Baker, Complex Variables Theory Appl. 17 (1991), 57-72. MR 1123803 (92m:30048)
  • [30] -, On the existence of fixpoints of composite meromorphic functions, Proc. Amer. Math. Soc. 114 (1992), 879-880. MR 1091176 (92f:30034)
  • [31] -, Newton's method and a class of meromorphic functions without wandering domains, Ergodic Theory Dynamical Systems (to appear).
  • [32] W. Bergweiler, F. von Haeseler, H. Kriete, H.-G. Meier, and N. Terglane, Newton's method for meromorphic functions, Proceedings of the conference "Complex analysis and its applications", Hong Kong (to appear).
  • [33] W. Bergweiler, M. Haruta, H. Kriete, H.-G. Meier, and N. Terglane, On the limit functions of iterates in wandering domains, Ann. Acad. Sci. Fenn. Ser. A I Math. (to appear). MR 1234740 (94j:30023)
  • [34] W. Bergweiler and S. Rohde, Omitted values in domains of normality, preprint. MR 1249869 (95g:30033)
  • [35] W. Bergweiler and N. Terglane, Weakly repelling fixpoints and the connectivity of wandering domains, preprint. MR 1327252 (96e:30055)
  • [36] P. Bhattacharyya, Iteration of analytic functions, Ph.D. thesis, Univ. of London, 1969.
  • [37] P. Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. (N.S.) 11 (1984), 85-141. MR 741725 (85h:58001)
  • [38] L. E. Böttcher, Beiträge zu der Theorie der Iterationsrechnung, Inaugural dissertation, Leipzig, 1898.
  • [39] D. A. Brannan and W. K. Hayman, Research problems in complex analysis, Bull. London Math. Soc. 21 (1989), 1-35. MR 967787 (89m:30001)
  • [40] H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1967), 103-141. MR 0194595 (33:2805)
  • [41] W. D. Bula and L. Oversteegen, A characterization of smooth Cantor bouquets, Proc. Amer. Math. Soc. 108 (1990), 529-534. MR 991691 (90d:54066)
  • [42] L. Carleson and T. W. Gamelin, Complex dynamics, Springer, New York, Berlin, and Heidelberg, 1993. MR 1230383 (94h:30033)
  • [43] N. G. Čebotarev, Über die Realität von Nullstellen ganzer transzendenter Funktionen, Math. Ann. 99 (1928), 660-686. MR 1512472
  • [44] C.-T. Chuang, A simple proof of a theorem of Fatou on the iteration and fix-points of transcendental entire functions, Analytic Functions of One Complex Variable, (C.-C. Yang and C.-T. Chuang, eds.), Contemp. Math., vol. 48, Amer. Math. Soc., Providence, RI, 1985, pp. 65-69. MR 838099 (87g:30026)
  • [45] J. Clunie, The composition of entire and meromorphic functions, Mathematical Essays Dedicated to A. J. Macintyre (H. Shankar, ed.), Ohio Univ. Press, Athens, Ohio, 1970, pp. 75-92. MR 0271352 (42:6235)
  • [46] H. Cremer, Über die Iteration rationaler Funktionen, Jahresber. Deutsche Math.-Ver. 33 (1925), 185-210.
  • [47] -, Zum Zentrumsproblem, Math. Ann. 98 (1926), 151-163.
  • [48] -, Über die Schrödersche Funktionalgleichung und das Schwarzsche Eckenabbildungsproblem, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 84 (1932), 291-324.
  • [49] -, Über die Häufigkeit der Nichtzentren, Math. Ann. 115 (1938), 573-580. MR 1513203
  • [50] R. L. Devaney, Julia sets and bifurcation diagrams for exponential maps, Bull. Amer. Math. Soc. (N.S.) 11 (1984), 167-171. MR 741732 (86b:58091)
  • [51] -, Structural instability of $ \exp (z)$, Proc. Amer. Math. Soc. 94 (1985), 545-548. MR 787910 (86m:58093)
  • [52] -, Dynamics of entire maps, Dynamical Systems and Ergodic Theory, Banach Center Publ., vol. 23, Polish Scientific Publishers, Warsaw, 1989, pp. 221-228. MR 1102716 (92e:58175)
  • [53] -, An introduction to chaotic dynamical systems, second ed., Addison-Wesley, Redwood City, 1989.
  • [54] -, Film and video as a research tool, Math. Intelligencer 11 (1989), 33-38. MR 994962 (90g:58058)
  • [55] -, Dynamics of simple maps, Chaos and Fractals. The Mathematics Behind the Computer Graphics (R. L. Devaney and L. Keen, eds.), Amer. Math. Soc., Providence, RI, 1989, pp. 1-24. MR 1010233
  • [56] -, $ {e^z}$: Dynamics and bifurcations, Internat. J. Bifurcation Chaos 1 (1991), 287-308. MR 1120198 (92e:58176)
  • [57] R. L. Devaney and M. B. Durkin, The exploding exponential and other chaotic bursts in complex dynamics, Amer. Math. Monthly 98 (1991), 217-232. MR 1093952 (92a:58113)
  • [58] R. L. Devaney, L. R. Goldberg, and J. Hubbard, Dynamical approximation to the exponential map by polynomials, Preprint MSRI 10019-86, Mathematical Sciences Research Institute, Berkeley, CA, 1986. MR 1315531 (95m:30036)
  • [59] R. L. Devaney and L. Keen, Dynamics of meromorphic maps with polynomial Schwarzian derivative, Ann. Sci. École Norm. Sup. (4) 22 (1989), 55-81. MR 985854 (90e:58071)
  • [60] R. L. Devaney and M. Krych, Dynamics of $ \exp (z)$, Ergodic Theory Dynamical Systems 4 (1984), 35-52. MR 758892 (86b:58069)
  • [61] R. L. Devaney and F. Tangermann, Dynamics of entire functions near the essential singularity, Ergodic Theory Dynamical Systems 6 (1986), 489-503. MR 873428 (88e:58057)
  • [62] A. Douady and J. H. Hubbard, Itération des polynômes quadratiques complexes, C. R. Acad. Sci. Paris Sér. I 294 (1982), 123-126. MR 651802 (83m:58046)
  • [63] -, Étude dynamique des polynômes complexes. I & II, Publ. Math. Orsay 84-02 (1984) & 85-04 (1985).
  • [64] N. Doual, J. L. Howland, and R. Vaillancourt, Selective solutions of transcendental equations, Computers Math. Appl. 22 (1991), 61-76. MR 1136170 (92h:65083)
  • [65] A. Edrei, Meromorphic functions with three radially distributed values, Trans. Amer. Math. Soc. 78 (1955), 276-293. MR 0067982 (16:808d)
  • [66] A. E. Eremenko, On the iteration of entire functions, Dynamical Systems and Ergodic Theory, Banach Center Publ., vol. 23, Polish Scientific Publishers, Warsaw, 1989, pp. 339-345. MR 1102727 (92c:30027)
  • [67] A. E. Eremenko and M. Yu. Lyubich, Iterates of entire functions, Soviet Math. Dokl. 30 (1984), 592-594; translation from Dokl. Akad. Nauk. SSSR 279 (1984). MR 769199 (86c:30044)
  • [68] -, Examples of entire functions with pathological dynamics, J. London Math. Soc. (2) 36 (1987), 458-468. MR 918638 (89e:30047)
  • [69] -, The dynamics of analytic transforms, Leningrad Math. J. 1 (1990), 563-634. MR 1015124 (91b:58109)
  • [70] -, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), 989-1020. MR 1196102 (93k:30034)
  • [71] P. Fatou, Sur les équations fonctionelles, Bull. Soc. Math. France 47 (1919), 161-271; 48 (1920), 33-94, 208-314.
  • [72] -, Sur l'itération des fonctions transcendantes entières, Acta Math. 47 (1926), 337-360.
  • [73] M. Flexor and P. Sentenac, Algorithmes de Newton généralisés, C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), 445-448. MR 991879 (90d:30076)
  • [74] E. Ghys, L. R. Goldberg, and D. P. Sullivan, On the measurable dynamics of $ z \to {e^z}$, Ergodic Theory Dynamical Systems 5 (1985), 329-335. MR 805833 (87e:58117)
  • [75] L. R. Goldberg and L. Keen, A finiteness theorem for a dynamical class of entire functions, Ergodic Theory Dynamical Systems 6 (1986), 183-192. MR 857196 (88b:58126)
  • [76] F. von Haeseler and H. Kriete, The relaxed Newton's method for polynomials, preprint.
  • [77] F. von Haeseler and H.-O. Peitgen, Newton's method and complex dynamical systems, Acta Appl. Math. 13 (1988), 3-58; Newton's method and dynamical systems (H.-O. Peitgen, ed.), Kluwer Academic Publishers, Dordrecht, 1989, pp. 3-58. MR 979816 (90a:58102)
  • [78] M. Haruta, The dynamics of Newton's method on the exponential function in the complex domain, Ph.D. thesis, Boston Univ., 1992.
  • [79] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964. MR 0164038 (29:1337)
  • [80] -, The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull. (3) 17 (1974), 317-358. MR 0385095 (52:5965)
  • [81] M. Herman, Exemples de fractions rationelles ayant une orbite dense sur la sphère de Riemann, Bull. Soc. Math. France 112 (1984), 93-142. MR 771920 (86d:58055)
  • [82] -, Are there critical points on the boundary of singular domains?, Comm. Math. Phys. 99 (1985), 593-612. MR 796014 (86j:58067)
  • [83] A. Hinkkanen, Iteration and the zeros of the second derivative of a meromorphic function, Proc. London Math. Soc. (3) 65 (1992), 629-650. MR 1182104 (94f:30035)
  • [84] -, On the size of Julia sets, preprint.
  • [85] J. L. Howland and R. Vaillancourt, Attractive cycles in the iteration of meromorphic functions, Numer. Math. 46 (1985), 323-337. MR 791694 (86g:30034)
  • [86] J. L. Howland, A. Thompson, and R. Vaillancourt, On the dynamics of a meromorphic function, Appl. Math. Notes 15 (1990), 7-37. MR 1102745 (92e:58177)
  • [87] G. Jank and L. Volkmann, Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser, Basel, Boston, and Stuttgart, 1985. MR 820202 (87h:30066)
  • [88] H. Th. Jongen, P. Jonker, and F. Twilt, The continuous, desingularized Newton method for meromorphic functions, Acta Appl. Math. 13 (1988), 82-121; Newton's method and dynamical systems (H.-O. Peitgen, ed.), Kluwer Academic Publishers, Dordrecht 1989, pp. 82-121. MR 979818 (90b:58232)
  • [89] G. Julia, Sur l'itération des fonctions rationelles, J. Math. Pures Appl. (7) 4 (1918), 47-245.
  • [90] -, Sur des problèmes concernant l'itération des fonctions rationelles, C. R. Acad. Sci. Paris Sér. I. Math. 166 (1918), 153-156.
  • [91] L. Keen, Dynamics of holomorphic self-maps of $ {\mathbb{C}^{\ast}}$, Holomorphic Functions and Moduli. I (D. Drasin, C. J. Earle, F. W. Gehring, I. Kra, and A. Marden, eds.), Springer, New York, Berlin, and Heidelberg, 1988. MR 955806 (90e:58075)
  • [92] -, Topology and growth of a special class of holomorphic self-maps of $ {\mathbb{C}^{\ast}}$, Ergodic Theory Dynamical Systems 9 (1989), 321-328. MR 1007413 (91b:30070)
  • [93] -Julia sets, Chaos and Fractals. The Mathematics Behind the Computer Graphics (R. L. Devaney and L. Keen, eds.), Amer. Math. Soc., Providence, RI, 1989, pp. 57-74. MR 1010236
  • [94] J. Kotus, Iterated holomorphic maps of the punctured plane, Dynamical Systems, (A. B. Kurzhanski and K. Sigmund, eds.), Lecture Notes Econom. and Math. Systems, vol. 287, Springer, Berlin, Heidelberg, and New York, 1987, pp. 10-29. MR 1120038 (92i:58152)
  • [95] -, The domains of normality of holomorphic self-maps of $ {\mathbb{C}^{\ast}}$, Ann. Acad. Sci. Fenn. Ser. A I Math. 15 (1990), 329-340. MR 1087340 (92b:58198)
  • [96] B. Krauskopf, Convergence of Julia sets in the approximation of $ \lambda {e^z}$ by $ \lambda {(1 + \frac{z}{d})^d}$, Internat. J. Bifurcation Chaos (to appear).
  • [97] H. Kriete, On the efficiency of relaxed Newton's method, Proceedings of the conference "Complex analysis and its applications", Hong Kong (to appear).
  • [98] S. Lattès, Sur l'itération des substitutions rationelles et les fonctions de Poincaré, C. R. Acad. Sci. Paris Ser. I Math. 166 (1918), 26-28 (Errata: p. 88).
  • [99] O. Lehto and K. I. Virtanen, Quasikonforme Abbildungen, Springer, Berlin, Heidelberg, and New York, 1965. MR 0188434 (32:5872)
  • [100] M. Yu. Lyubich, The dynamics of rational transforms: the topological picture, Russian Math. Surveys 41 (1986), 43-117; translation from Uspekhi Mat. Nauk. 41 (1986), 35-95. MR 863874 (88g:58094)
  • [101] -, Measurable dynamics of the exponential, Soviet Math. Dokl. 35 (1987), 223-226; translation from Dokl. Akad. Nauk. SSSR 292 (1987). MR 880612 (88h:58063)
  • [102] -, Measurable dynamics of the exponential, Sib. Math. J. 28 (1988), 780-793; translation from Sib. Mat. Zh. 28 (1987), 111-127. MR 924986 (89d:58071)
  • [103] C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions, Trans. Amer. Math. Soc. 300 (1987), 329-342. MR 871679 (88a:30057)
  • [104] P. M. Makienko, Iterates of analytic functions of $ {\mathbb{C}^{\ast}}$, Soviet Math. Dokl. 36 (1988), 418-420; translation from Dokl. Akad. Nauk. SSSR 297 (1987). MR 916928 (88m:30066)
  • [105] R. M. May, Simple mathematical models with very complicated dynamics, Nature 261 (1976), 459-467.
  • [106] J. C. Mayer, An explosion point for the set of endpoints of the Julia set of $ \lambda \exp (z)$, Ergodic Theory Dynamical Systems 10 (1990), 177-183. MR 1053806 (91e:58153)
  • [107] H.-G. Meier, The relaxed Newton-iteration for rational functions: the limiting case, Complex Variables Theory Appl. 16 (1991), 239-260. MR 1105199 (92g:58108)
  • [108] J. Milnor, Dynamics in one complex variable: introductory lectures, Stony Brook Institute for Mathematical Sciences, preprint 1990/5. MR 1721240 (2002i:37057)
  • [109] M. Misiurewicz, On iterates of $ {e^z}$, Ergodic Theory and Dynamical Systems 1 (1981), 103-106. MR 627790 (82i:58058)
  • [110] P. Montel, Leçons sur les familles normales de fonctions analytiques et leurs applications, Gauthiers-Villars, Paris, 1927.
  • [111] R. Nevanlinna, Analytic functions, Springer, Berlin, Heidelberg, and New York, 1970. MR 0279280 (43:5003)
  • [112] H.-O. Peitgen and P. H. Richter, The beauty of fractals, Springer, Berlin, Heidelberg, New York, and Tokyo, 1986. MR 852695 (88e:00019)
  • [113] R. Pérez-Marco, Solution complète au problème de Siegel de linéarisation d'une application holomorphe au voisinage d'un point fixe (d'après J.-C. Yoccoz), Sém. Bourbaki 753 (1992).
  • [114] H. Radström, On the iteration of analytic functions, Math. Scand. 1 (1953), 85-92. MR 0056702 (15:115a)
  • [115] M. Rees, The exponential map is not recurrent, Math. Z. 191 (1986), 593-598. MR 832817 (87g:58063)
  • [116] J. F. Ritt, On the iteration of rational functions, Trans. Amer. Math. Soc 21 (1920), 348-356. MR 1501149
  • [117] P. C. Rosenbloom, L'itération des fonctions entières, C. R. Acad. Sci. Paris Sér. I Math. 227 (1948), 382-383. MR 0026691 (10:187a)
  • [118] D. Ruelle, Elements of differentiable dynamics and bifurcation theory, Academic Press, Boston, 1989. MR 982930 (90f:58048)
  • [119] C. L. Siegel, Iteration of analytic functions, Ann. of Math. (2) 43 (1942), 607-612. MR 0007044 (4:76c)
  • [120] M. Viana da Silva, The differentiability of the hairs of $ \exp (z)$, Proc. Amer. Math. Soc. 103 (1988), 1179-1184. MR 955004 (89m:30052)
  • [121] M. Shishikura, On the quasi-conformal surgery of rational functions, Ann. Sci. École Norm. Sup. (4) 20 (1987), 1-29. MR 892140 (88i:58099)
  • [122] -, The connectivity of the Julia set and fixed point, preprint IHES/M/90/37, Institut des Hautes Études Scientifiques, 1990.
  • [123] S. Smale, On the efficiency of algorithms of analysis, Bull. Amer. Math. Soc. (N.S.) 13 (1985), 87-121. MR 799791 (86m:65061)
  • [124] G. M. Stallard, Entire functions with Julia sets of zero measure, Math. Proc. Cambridge Philos. Soc. 108 (1990), 551-557. MR 1068456 (91g:30037)
  • [125] -, A class of meromorphic functions with no wandering domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), 211-226. MR 1139794 (93e:30059)
  • [126] -, The Hausdorff dimension of Julia sets of entire functions, Ergodic Theory Dynamical Systems 11 (1991), 769-777. MR 1145621 (93e:30060)
  • [127] N. Steinmetz, On Sullivan's classification of periodic stable domains, Complex Variables Theory Appl. 14 (1990), 211-214. MR 1048721 (91d:58211)
  • [128] -, Rational iteration, Walter de Gruyter, Berlin, 1993. MR 1224235 (94h:30035)
  • [129] D. Sullivan, Itération des fonctions analytiques complexes, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 301-303. MR 658395 (83d:58061)
  • [130] -, Quasiconformal homeomorphisms and dynamics I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), 401-418. MR 819553 (87i:58103)
  • [131] -, Quasiconformal homeomorphisms and dynamics III. Topological conjugacy classes of analytic endomorphisms, preprint IHES/M/83/1, Institut des Hautes Etudes Scientifiques, 1983.
  • [132] S. Sutherland, Finding roots of complex polynomials with Newton's method, Ph.D. thesis, Boston Univ., 1989.
  • [133] H. Töpfer, Über die Iteration der ganzen transzendenten Funktionen, insbesondere von $ \sin z$ und $ \cos z$, Math. Ann. 117 (1939), 65-84. MR 0001293 (1:211e)
  • [134] -, Komplexe Iterationsindizes ganzer und rationaler Funktionen, Math. Ann. 121 (1949), 191-222. MR 0031549 (11:168a)
  • [135] G. Valiron, Lectures on the general theory of integral functions, Édouard Privat, Toulouse, 1923.
  • [136] C.-C. Yang and J.-H. Zheng, Further results on fixpoints and zeros of entire functions, Trans. Amer. Math. Soc. (to appear). MR 1179403 (95c:30032)
  • [137] Zhuan Ye, Structural instability of exponential functions, preprint. MR 1242788 (95j:30023)
  • [138] J.-C. Yoccoz, Théorème de Siegel, nombres de Brjuno et polynômes quadratiques, preprint, 1987. MR 1367353 (96m:58214)
  • [139] -, Linéarisation des germes de difféomorphismes holomorphes de $ (C,0)$, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 55-58. MR 929279 (89i:58123)
  • [140] J. Zhou and Z. Li, Structural instability of the mapping $ z \to \lambda \exp (z)\,(\lambda > {e^{ - 1}})$, Sci. China Ser. A 30 (1989), 1153-1161. MR 1057994 (91g:58231)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 30D05, 58F23

Retrieve articles in all journals with MSC (2000): 30D05, 58F23


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1993-00432-4
Keywords: Iteration, meromorphic function, entire function, set of normality, Fatou set, Julia set, periodic point, wandering domain, Baker domain, Newton's method
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society