Dynamical zeta functions for maps of the interval

Author:
David Ruelle

Journal:
Bull. Amer. Math. Soc. **30** (1994), 212-214

MSC (2000):
Primary 58F20; Secondary 58F03

MathSciNet review:
1246470

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A dynamical zeta function and a transfer operator are associated with a piecewise monotone map of the interval [0, 1] and a weight function . The analytic properties of and the spectral properties of are related by a theorem of Baladi and Keller under an assumption of "generating partition". It is shown here how to remove this assumption and, in particular, extend the theorem of Baladi and Keller to the case when has negative Schwarzian derivative.

**[1]**V. Baladi and G. Keller,*Zeta functions and transfer operators for piecewise monotone transformations*, Comm. Math. Phys.**127**(1990), no. 3, 459–477. MR**1040891****[2]**V. Baladi and D. Ruelle,*Some properties of zeta functions associated with maps in one dimension*, in preparation.**[3]**Nicolai T. A. Haydn,*Meromorphic extension of the zeta function for Axiom A flows*, Ergodic Theory Dynam. Systems**10**(1990), no. 2, 347–360. MR**1062762**, 10.1017/S0143385700005587**[4]**Franz Hofbauer,*Piecewise invertible dynamical systems*, Probab. Theory Relat. Fields**72**(1986), no. 3, 359–386. MR**843500**, 10.1007/BF00334191**[5]**Franz Hofbauer and Gerhard Keller,*Zeta-functions and transfer-operators for piecewise linear transformations*, J. Reine Angew. Math.**352**(1984), 100–113. MR**758696**, 10.1515/crll.1984.352.100**[6]**Gerhard Keller and Tomasz Nowicki,*Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps*, Comm. Math. Phys.**149**(1992), no. 1, 31–69. MR**1182410****[7]**John Milnor and William Thurston,*On iterated maps of the interval*, Dynamical systems (College Park, MD, 1986–87) Lecture Notes in Math., vol. 1342, Springer, Berlin, 1988, pp. 465–563. MR**970571**, 10.1007/BFb0082847**[8]**David Ruelle,*Zeta-functions for expanding maps and Anosov flows*, Invent. Math.**34**(1976), no. 3, 231–242. MR**0420720****[9]**David Ruelle,*Analytic completion for dynamical zeta functions*, Helv. Phys. Acta**66**(1993), no. 2, 181–191. MR**1218071**

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC (2000):
58F20,
58F03

Retrieve articles in all journals with MSC (2000): 58F20, 58F03

Additional Information

DOI:
https://doi.org/10.1090/S0273-0979-1994-00489-6

Keywords:
Zeta function,
transfer operator,
topological pressure,
interval map

Article copyright:
© Copyright 1994
American Mathematical Society