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I find myself agreeing with much of the detail of the Jaffe-Quinn argument,

especially the importance of distinguishing between results based on rigorous

proofs and those which have a heuristic basis. Overall, however, I rebel against

their general tone and attitude which appears too authoritarian.

My fundamental objection is that Jaffe and Quinn present a sanitized view

of mathematics which condemns the subject to an arthritic old age. They see

an inexorable increase in standards of rigour and are embarrassed by earlier

periods of sloppy reasoning. But if mathematics is to rejuvenate itself and

break exciting new ground it will have to allow for the exploration of new ideas

and techniques which, in their creative phase, are likely to be as dubious as in

some of the great eras of the past. Perhaps we now have high standards of proof

to aim at but, in the early stages of new developments, we must be prepared to

act in more buccaneering style.
The history of mathematics is full of instances of happy inspiration triumph-

ing over a lack of rigour. Euler's use of wildly divergent series or Ramanujan's

insights are among the more obvious, and mathematics would have been poorer

if the Jaffe-Quinn view had prevailed at the time. The marvelous formulae

emerging at present from heuristic physical arguments are the modern counter-

parts of Euler and Ramanujan, and they should be accepted in the same spirit

of gratitude tempered with caution.

In fact the whole area between Quantum Field Theory and Geometry (which

is the main target of Jaffe-Quinn) has now produced a wealth of new results

which have striking evidence in their favour. In many important cases we now

have rigorous proofs based on other methods. This provides additional confi-

dence in the heuristic arguments used to discover the results in the first place.

For example, Witten's work has greatly extended the scope of the Jones knot

invariants and, when the dust settles, I think we will see here a fully rigorous

topological quantum field theory in 2+1 dimensions. The Feynman integrals

will have been given precise meanings, not by analysis, but by a mixture of

combinatorial and algebraic techniques. The disparaging remarks in the Jaffe-

Quinn article are totally unjustified.
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Other results of this type (which now have rigorous proofs) include the rigid-

ity of the elliptic genus, formulae for the volume of moduli spaces, computations

of their cohomology, and information about rational curves on 3-dimensional

Calabi-Yau manifolds. A new and much simpler proof of the positive energy

theorem of Schoen and Yau emerged from ideas of Witten, based on the Dirac

operator and a super-symmetric formalism. Jaffe-Quinn single out the Schoen-

Yau proof as an example of respectable mathematical physics, but they deny

the title to Witten.

While acknowledging the important role of conjectures in mathematics,

Jaffe and Quinn reserve their garland for the person who ultimately produces

the rigorous proof. For example, they cite the famous Weil conjectures and

the eventual proof by Deligne (and Grothendieck). But surely Weil deserves

considerable credit for the whole conception (and the proof for curves)? The

credit which posterity ascribes depends on the respective weight of ideas and

techniques in the conjecture and its proof. In the case of Hodge's theory of

harmonic forms, Hodge's own proof was essentially faulty because his under-

standing of the necessary analysis was inadequate. Correct proofs were sub-

sequently provided by better analysts, but this did not detract from Hodge's

glory. The mathematical world judged that Hodge's conceptual insight more

than compensated for a technical inadequacy.

Jaffe represents the school of mathematical physicists who view their role

as providing rigorous proofs for the doubtful practices of physicists. This is a

commendable objective with a distinquished history. However, it rarely excites

physicists who are exploring the front line of their subject. What mathemati-

cians can rigorously prove is rarely a hot topic in physics.

What is unusual about the current interaction is that it involves front-line

ideas both in theoretical physics and in geometry. This greatly increases its inter-

est to both parties, but Jaffe-Quinn want to emphasize the dangers. They point

out that geometers are inexperienced in dealing with physicists and are perhaps

being led astray. I think most geometers find this attitude a little patronizing:

we feel we are perfectly capable of defending our virtue.

What we are now witnessing on the geometry/physics frontier is, in my opin-

ion, one of the most refreshing events in the mathematics of the 20th century.

The ramifications are vast and the ultimate nature and scope of what is being

developed can barely be glimpsed. It might well come to dominate the mathe-

matics of the 21st century. No wonder the younger generation is being attracted,

but Jaffe and Quinn are right to issue warning signs to potential students. For

those who are looking for a solid, safe PhD thesis, this field is hazardous, but
for those who want excitement and action it must be irresistible.

Armand Borel

Institute for Advanced Study
Princeton, NJ 08540
borel@math.ias.edu

Some comments on the article by A. Jaffe and F. Quinn:

There are a number of points with which I agree, but they are so obvious
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that they do not seem worth such an elaborate discussion. On the other hand, I

disagree with the initial stand and with much of the general thrust of the paper,

so that I shall not comment on it item by item, but limit myself to some general

remarks.

First the starting point. I have often maintained, and even committed to

paper on some occasions, the view that mathematics is a science, which, in

analogy with physics, has an experimental and a theoretical side, but operates in

an intellectual world of objects, concepts and tools. Roughly, the experimental

side is the investigation of special cases, either because they are of interest in

themselves or because one hopes to get a clue to general phenomena, and the

theoretical side is the search of general theorems. In both, I expect proofs of

course, and I reject categorically a division into two parts, one with proofs, the

other without.

I also feel that what mathematics needs least are pundits who issue prescrip-

tions or guidelines for presumably less enlightened mortals. Warnings about

the dangers of certain directions are of course nothing new. In the late for-

ties, H. Weyl was very worried by the trend towards abstraction, exemplified

by the books of Bourbaki or that of Chevalley on Lie groups, as I knew from

M. Plancherel. Later, another mathematician told me he had heard such views

from H. Weyl in the late forties but, then, around 1952 I believe, i.e. after the

so-called French explosion, H. Weyl told him: "I take it all back."
In fact, during the next quarter century, we experienced a tremendous devel-

opment of pure mathematics, bringing solutions of one fundamental problem

after the other, unifications, etc., but during all that time, there was in some

quarters some whining about the dangers of the separation between pure math

and applications to sciences, and how the great nineteenth century mathemati-

cians cultivated both (conveniently ignoring some statements by none other than

Gauss which hardly support that philosophy). [To avoid any misunderstanding,

let me hasten to add that I am not advocating the separation between the two,

being quite aware of the great benefits on both sides of interaction, but only the
freedom to devote oneself to pure mathematics, if so inclined.]

Of course, I agree that no part of mathematics can flourish in a lasting way

without solid foundations and proofs, and that not doing so was harmful to

Italian algebraic geometry for instance. I also feel that it is probably so for
the Thurston program, too. It can also happen that standards of rigor deemed

acceptable by the practitioners in a certain area turn out to be found wanting

by a greater mathematical community. A case in point, in my experience, was

E. Cartan's work on exterior differential forms and connections, some of which
was the source of a rather sharp exchange between Cartan and Weyl. Person-

ally, I felt rather comfortable with it but later, after having been exposed to

the present points of view, could hardly understand what I had thought to un-

derstand. We all know about Dirac diagonalizing any self-adjoint operator and

using the Dirac function. And there are of course many more examples. But

I do believe in the self-correcting power of mathematics, already expressed by

D. Hubert in his 1900 address, and all I have mentioned (except for Thurston's

program) has been straightened out in due course. Let me give another exam-

ple of this self-correcting power of mathematics. In the early fifties, the French

explosion in topology was really algebraic topology with a vengeance. Around

1956, I felt that topology as a whole was going too far in that direction and I
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was wishing that some people would again get their hands dirty by using more

intuitive or geometric points of view (I did so for instance in a conversation

with J. C. Whitehead at the time, which he reminded me of shortly before his

death, in 1960; I had forgotten it.) But shortly after came the developments of

PL-topology by Zeeman and Stallings, of differential topology by Milnor and

Smale, and there was subsequently in topology a beautiful equilibrium between

algebraic, differential and PL points of view.

But this was achieved just because some gifted people followed their own

inclinations, not because they were taking heed of some solemn warning.

In advocating freedom for mathematicians, I am not innovating at all. I

can for instance refer to a lecture by A. Weil (Collected Papers II, 465-469)

praising disorganization in mathematics and pointing out that was very much

the way Bourbaki operated. As a former member of Bourbaki, I was of course

saddened to read that all that collective work, organized or not, ended up with

the erection of a bastion of arch-conservatism. Not entertaining pyramids of

conjectures? Let me add that Weil was not ostracized for his conjectures, nor

was Grothendieck for his standard conjectures and the theory motives, nor Serre
for his "questions".

F. Quinn is not making history in raising questions about the Research

Announcements in the Bulletin, as you know. At some point, they were func-

tioning poorly and their suppression was suggested by some. To which I. Singer

answered that people making such proposals did not know what the AMS was

about (or something to that effect) and offered to manage that department for

a few years. He did so and it functioned very well during his tenure. Also,

the Comptes Rendus have a very long history of R.A.s. There were ups and

downs of course, but for the last twenty years or so, it seems to me to have been

working well on the whole. All this to say that the problems seen by F. Quinn

are not new, have been essentially taken care of in the past, and I do not see

the need for new prescriptions.

G. J. Chaitin
IBM Research Division
P. O. Box 704
Yorktown Heights, NY 10598
chaitin@watson.ibm.com

Abstract. It is argued that the information-theoretic incomplete-

ness theorems of algorithmic information theory provide a cer-

tain amount of support for what Jaffe and Quinn call "theoret-
ical mathematics".

One normally thinks that everything that is true is true for a reason. I've

found mathematical truths that are true for no reason at all. These mathemat-

ical truths are beyond the power of mathematical reasoning because they are
accidental and random.

Using software written in Mathematica that runs on an IBM RS/6000

workstation [5, 7], I constructed a perverse 200-page exponential diophantine
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equation with a parameter N and 17,000 unknowns:

Left-Hand-Side( N ) = Right-Hand-Side( N ).
For each nonnegative value of the parameter N, ask whether this equation

has a finite or an infinite number of nonnegative solutions. The answers escape

the power of mathematical reason because they are completely random and

accidental.
This work is part of a new field that I call algorithmic information theory

[2,3,4].
What does this have to do with Jaffe and Quinn [1]?
The result presented above is an example of how my information-theoretic

approach to incompleteness makes incompleteness appear pervasive and natu-

ral. This is because algorithmic information theory sometimes enables one to

measure the information content of a set of axioms and of a theorem and to de-

duce that the theorem cannot be obtained from the axioms because it contains

too much information.

This suggests to me that sometimes to prove more one must assume more, in

other words, that sometimes one must put more in to get more out. I therefore

believe that elementary number theory should be pursued somewhat more in the

spirit of experimental science. Euclid declared that an axiom is a self-evident

truth, but physicists are willing to assume new principles like the Schrödinger

equation that are not self-evident because they are extremely useful. Perhaps

number theorists, even when they are doing elementary number theory, should

behave a little more like physicists do and should sometimes adopt new axioms.

I have argued this at greater length in a lecture [6, 8] that I gave at Cambridge

University and at the University of New Mexico.

In summary, I believe that the information-theoretic incompleteness theo-

rems of algorithmic information theory [2,3,4,5,6,7,8] provide a certain amount

of support for what Jaffe and Quinn [1] call "theoretical mathematics".
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The paper distorts the relation of experiment to theoretical physics. To

paraphrase Fermi (perhaps badly): an experiment which finds the unexpected

is a discovery; an experiment which finds the expected is a measurement.

I have the impression that applying rigor to a theoretical idea is given sub-

stantial credit when it disconfirms the theoretical idea or when the proof is

especially difficult or when the ideas of the proof are original, interesting and

fruitful. This seems quite enough to motivate the application of rigor, for those

who are motivated by the prospect of credit. Perhaps pedestrian proofs do

get only a little recognition, but should they really get more? Is it useful to

formulate explicit general rules for assigning credit in mathematics?

Is there really any evidence that mathematics is suffering from the theoret-

ical influence? Are mathematicians really finding it difficult to read theoreti-

cal papers critically, detecting for themselves the level of rigor? Are rigorous-

minded graduate students so awash in problems that they truly resent the offer-

ings of the so-called theoretical mathematicians?

As far as I know, there has never been a surplus of originality in mathematics

or in physics. Is it useful to criticize the manner of expression of original ideas

on the grounds that the community is slow to absorb, evaluate and/or pursue

them?

James Glimm

Department of Applied Mathematics and Statistics

State University of New York at Stony Brook

Stony Brook, NY 11794-3600
mills@ams.sunysb.edu

Truth, in science, lies not in the eye of the beholder, but in objective reality.

It is thus reproducible across barriers of distance, political boundaries and time.
As mathematics becomes increasingly involved in interdisciplinary activities,

clashes with distinct standards of proof from other disciplines will arise. The

Jaffe-Quinn article is thus constructive, in opening and framing this discussion

for the interaction of mathematics with physics.

These issues are older, and perhaps better understood, within the applied

mathematics community. The outcome there follows the broad outlines pro-

posed by Jaffe and Quinn: clear labeling of standards which are adopted within

a specific paper, or "truth in advertising". Additionally, especially for com-

putational mathematics, the standard of reproducibility is tested by the actual

reproduction of a (similar, related or even identical) experiment, by (say) other

methods. However, the most central standard of truth in science is the agree-

ment between theory and data (e.g. laboratory experiments). In this sense,

science has a standard which goes beyond that of mathematics. A conclusion
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is correct according to the standards of science if both the hypotheses and the

reasoning connecting the hypotheses to the conclusion are valid.

It bears repeating that the correct standards for interdisciplinary work con-

sist not of the intersection, but the union of the standards from the two dis-

ciplines. Specificially, speculative theoretical reasoning in physics is usually
strongly constrained by experimental data. If mathematics is going to con-

template a serious expansion in the amount of speculation which it supports
(which could have positive consequences), it will have a serious and comple-
mentary need for the admission of new objective sources of data, going beyond

rigorously proven theorems, and including computer experiments, laboratory

experiments and field data. Put differently, the absolute standard of logically

correct reasoning was developed and tested in the crucible of history. This

standard is a unique contribution of mathematics to the culture of science. We

should be careful to preserve it, even (or especially) while expanding our hori-

zons.

Jeremy J. Gray

Faculty of Mathematics
Open University

Milton Keynes, MK7 6AA
England

The letter by Jaffe and Quinn raises several issues. The extent to which

theoretical mathematics, as they term it, is prevalent in mathematics is perhaps

for a mathematician rather than an historian of mathematics to comment upon,

but it seems to me that one aspect of the problem is underestimated. Not only

students and young researchers but all those who work away from the main

centers of research are disadvantaged. They too will be encouraged to rely

unwisely on insecure claims. They will also be unaware of the degree to which

the claims of theoretical mathematics are discounted or interpreted by experts
in the field.

Indeed, the role of experts in this connection is more complicated than the

authors have suggested. Preprints aside, theoretical mathematics is published

presumably because competent referees have endorsed it. It is often accom-

panied by talks, invited lectures, and conference papers given not only by the

author but others equally convinced of the merits of the work. The problem

does not arise merely with one mathematician claiming too much, but with a
network of others endorsing the claims.

The involvement of experts points to a problem with the remedies proposed

by Jaffe and Quinn. Their plea for honest advertising is surely to be accepted.

The difficult problem we all have to confront is the honest mistake. What of the

paper that offers a result which is not, in the opinion of the author, conjectural

but proved? To be sure, the proof is based on insights that have not yet yielded

to expression in the form of definitions, lemmas, and proofs, but it seems clear

to the author. It may well be clear to the referee. Both would wish to see

the work presented as rigorous mathematics. Many would argue that the tricky

concept of shared insight rather than logical precision is what mathematical
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communication is about. But since there are no absolute canons of rigour, and

it is impossible to insist that every paper be written so that a (remarkably)

patient graduate student can follow it, some mistakes are inevitably published.

This observation does not render the proposed remedy nugatory, but it suggests

that we shall still be working in an imperfect world.

Care would also have to be given to the suggestion that theoretical work

could be published as such. The present system has the virtue that discoverers

of new and important mathematics work as hard as they can to prove the validity

of their claims. So far as I know, the cautionary tales presented by Jaffe and

Quinn are all tales of mathematicians who at the time of publication had done

their best to present correct statements. On the other hand, it is well known that

working mathematicians habitually entertain ideas which do not quite work out

as they had hoped. Their initial insight was not, after all, veridical. One would

have to be cautious of adopting a scheme whereby a good mathematician could

publish a paper, labelled theoretical, without trying flat out to prove its results.

There are, at the highest level, few if any more likely to come up with the proofs

than these creative mathematicians themselves.

The historical examples given are also open to refinement, but in ways that

if anything support the paper. It is true that classic Italian algebraic geometry

entered a decline, and that by modern standards it seems to lack rigour—but

this perception is modern, and due to Zariski, who also brought new questions

to bear (such as arbitrary fields). What it seemed to contain at the time was a

rich mixture of results and problems. Certain key topics were held to be securely

established at one moment, more doubtful at another, much as is the case in

some topics today. Poincaré typically wrote papers that few could respond to for

a generation. The reasons are not clear, but the theoretical nature of his work

cannot have helped. A student of mine, June Barrow-Green, has recently shown

that a major mistake in his prize-winning essay on celestial mechanics eluded the

judges, Weierstrass and Hermite. Had Poincaré not spotted the error himself,

it would presumably have been published with their implicit endorsement.

What is perhaps the greatest change over the last one hundred years is not

that standards have risen—the authors make a good case that they have not—

but that the profession has grown. Poincaré may have had an audience of no

more than ten capable of following him at his most inspired, and they all had

consuming interests of their own. Today's leading figures soon attract seminars

in half a dozen places, the attention of many other mature mathematicians, and

perhaps the zeal of ambitious graduate students. What is striking is that despite

all this attention, there are still the problems to which Jaffe and Quinn have

drawn our attention and for which we must surely thank them for outlining

remedies. Because the best theoretical work may convince even experts unduly,

I fear that we cannot be optimistic about the outcome.
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Morris W. Hirsch
Department of Mathematics
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Berkeley, CA 94720-0001
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Theoretical, Speculative and Nonrigorous Mathematics

Several interesting and controversial points are raised in this provocative

essay.

To begin with, the authors make up a new term, "theoretical mathematics".

They suggest that there is a growing branch of mathematics called theoretical

mathematics, whose relation to rigorous mathematics is parallel to that between

theoretical physics and experimental physics. They warn of dangers in this kind

of division of labor, but suggest that this new field could be a respectable branch

of mathematics.

Even though the authors "do not wish to get involved in a discussion of

terminology", it is important to note at the outset that their use of "theoretical"

is tied to a controversial philosophical position: that mathematics is about the

"nature of reality", later qualified as "mathematical reality", apparently distinct

from "physical reality". They suggest "Mathematicians may have even better

access to mathematical reality than the laboratory sciences have to physical
reality."

While they wisely don't attempt to define "mathematical reality", this philo-

sophical stance complicates and prejudices the discussion. For if we don't as-

sume that mathematical speculations are about "reality" then the analogy with

physics is greatly weakened—and there is then no reason to suggest that a spec-

ulative mathematical argument is a theory of anything, any more than a poem

or novel is "theoretical". For this reason I hope this use of "theoretical" is not

generally adopted; instead I prefer the more natural speculative mathematics.

It should be obvious that there is a huge difference between theoretical physics
and speculative mathematics!

The nonrigorous use of mathematics by scientists, engineers, applied math-

ematicians and others, out of which rigorous mathematics sometimes develops,

is in fact more complex than simple speculation. While sloppy proofs are all too

common, deliberate presentation of unproved results as correct is fortunately
rare.

Much more frequent is the use of mathematics for narrative purposes. An

author with a story to tell feels it can be expressed most clearly in mathematical

language. In order to tell it coherently without the possibly infinite delay rigor

might require, the author introduces certain assumptions, speculations and leaps

of faith, e.g.: "In order to proceed further we assume the series converges—the

random variables are independent—the equilibrium is stable—the determinant

is nonzero—." In such cases it is often irrelevant whether the mathematics

can be rigorized, because the author's goal is to persuade the reader of the
plausibility or relevance of a certain view about how some real world system

behaves. The mathematics is a language filled with subtle and useful metaphors.

The validation is to come from experiment—very possibly on a computer. The

goal in fact may be to suggest a particular experiment. The result of the narrative
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will be not new mathematics, but a new description of "reality" [real reality!)

This use of mathematics can be shocking to the pure mathematician en-

countering it for the first time; but it is not only harmless, but indispensable to
scientists and engineers.

Was Poincaré Speculative?

We must carefully distinguish between modern papers containing mathe-

matical speculations, and papers published a hundred years ago which we, to-

day, consider defective in rigor, but which were perfectly rigorous according to

the standards of the time. Poincaré in his work on Analysis Situs was being

as rigorous as he could, and certainly was not consciously speculative. I have

seen no evidence that contemporary mathematicicans considered it "reckless" or

"excessively theoretical". When young Heegard in his 1898 dissertation brashly

called the master's attention to subtle mistakes, Poincaré in 1899, calling Hee-

gard's paper "très remarquable", respectfully admitted his errors and repaired

them. In contrast, in his 1912 paper on the Annulus Twist theorem (later proved

by Birkhoff), Poincaré apologized for publishing a conjecture, citing age as his
excuse.

I don't accept the authors' Cautionary Tale of the "slow start" in alge-

braic and differential topology due to Poincaré's having "claimed too much,

and proved too little". In fact he proved quite a lot by the standards of the

day—but there was little use for it because the mathematics which could use

it was not sufficiently developed. The "15 or 20 years" which it took for "real

development to begin" was not a long period in that more leisurely age. In fact

it was not until the late 1950s that what is now called differential topology found

substantial application in other fields.

Poincaré could indeed be careless: In 1900 he announced that if (in our

terminology) a closed manifold has the same Betti numbers as the 3-sphere 5*3

then it is homeomorphic to S3. But in 1904 he admitted his error (neglecting

the fundamental group), gave a counterexample, and also stated what we call
his "conjecture".

Hermann Weyl had given the modern definition of abstract differentiable

manifolds in about 1913 in his book on Riemann surfaces, yet Elie Cartan

in his groundbreaking 1925 book on Riemannian Spaces (today's Riemannian

manifolds) not only wrote, "It is very difficult to define a Riemannian space,"
but in fact never did define them.

Now this book is a most marvelous piece of mathematics which is full of

unexplained and nonrigorous (for most of us) terms such as "infinitesimal rota-

tion". Was this speculative mathematics? Was it criticized by contemporaries

for its lack of rigor? Should it not have been published? In fact it is—now—

perfectly easy to rigorize it using the theory of connections in fibre spaces,
invented after the book was published.

More Cautionary Tales

There are other Cautionary Tales to be told:

Even Gauss Published Incomplete Proofs

Gauss's first proof of the Fundamental Theorem of Algebra, in his 1799 dis-

sertation,   was widely admired as the  first wholly satisfactory proof.  It
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relied, however, on a statement "known from higher geometry", which "seems

to be sufficiently well demonstrated": If a branch of a real polynomial curve

F(x, y) = 0 enters a plane region, it must leave it again. Gauss, evidently

feeling more persuasion was needed, added: "Nobody, to my knowledge, has

ever doubted it. But if anybody desires it, then on another occasion I intend

to give a demonstration which will leave no doubt ... ." According to Smale's

1981 Bulletin article (from which these quotes are taken), this "immense gap"

remained even when Gauss redid this proof 50 years later, and the gap was not

filled until 1920.

Simple Finite Groups

The authors allude to the 15,000 published pages comprising the classifi-
cation of finite groups as "theoretical" mathematics, and an example of "big

science" in mathematics, but they do not characterize it as a Cautionary Tale,

as I do. Has the classification been rigorously proved? What kind of a proof

is this? Is there an expert who claims to have read it all and verified it? It

is overwhelmingly probable that 15,000 pages contain mistakes. I have been

told recently that some of the parts that were farmed out by the organizers of

the project have never in fact been completed. What then is the status of the

classification theorem? Can we rely on it? If in fact the proof is incomplete,

shouldn't this be made public? Who's in charge here, anyway?

Computer-assisted Proofs

These present many Cautionary Tales. Oscar Lanford pointed out that in

order to justify a computer calculation as part of a proof (as he did in the first

proof of the Feigenbaum cascade conjecture), you must not only prove that

the program is correct (and how often is this done?), but you must understand

how the computer rounds numbers, and how the operating system functions,

including how the time-sharing system works. In fact, Lanford pointed out, my

late colleague R. Devogelaere discovered an error in Berkeley's system caused
by the time-sharing protocol.

The 4-color Theorem

A case in point, combining features of the two preceding Cautionary Tales, is

the proof by Appel and Haken of the 4-color theorem. In their interesting 1986

article in the Mathematical Intelligencer they point out that the reader of their

1977 articles must face "50 pages containing text and diagrams, 85 pages filled

with almost 2500 additional diagrams, and 400 microfiche pages that contain

further diagrams and thousands of individual verifications of claims made in

the 24 lemmas in the main section of the text." In addition the reader is told

that "certain facts have been verified with the use of about twelve hundred

hours of computer time... in some places there were typographical and copying

errors." They go on to assert that readers of the 1986 article will understand

"why the type of errors that crop up in the details do not affect the robustness

of the proof." They point out that every error found subsequent to publication

was "repaired within two weeks". Several new errors and their corrections are

discussed in this article, as well as an "error correction routine" that seems to

the authors "quite plausible". In 1981 "about 40 percent" of 400 key pages had

been independently checked, and 15 errors corrected, by U. Schmidt. In 1984

S. Saeki found another error which "required a small change in one diagram
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and in the corresponding checklist" (p. 58). Are we now to consider the 4-color

theorem as proved in the same sense as, say, the prime number theorem?

Computerized Mathematics

Large-scale programs such as Mathematica and Maple are increasingly relied

on for both numerical and symbolical calculations. A recent widely distributed

email message reproduced Maple output which, if correct, disproves the unique

prime factorization theorem. What is the status of a proof that includes such

calculations? Are we to consider any proof relying on Mathematica, Maple or

other such programs merely speculative mathematics? Should such a proof be

so labeled?

Don't Prove, Just Lecture!

A great deal of time has been wasted by respected mathematicians who

announce the solution of a famous conjecture, sometimes with a great deal of

publicity in the popular press, and then lecture widely about it, but never giving

details of a proof either in lectures or print, and who eventually admit they are

wrong. (As a variant, a proof is published in an unrefereed article.) This is

speculative mathematics at its worst, and is inexcusable. '

Dated, Labeled Proofs

Perhaps published mathematics, like good wine, should carry a date. If after

ten years no errors have been found, the theorem will be generally accepted. But

there should also be an expiration time: If any thirty-year period elapses without

publication of an independent proof, belief in the theorem's correctness will be

accordingly diminished. This would allow for the reality that concepts of proof

and standards of rigor change.

In addition we could attach a label to each proof, e. g.: computer-aided,

mass collaboration, formal, informal, constructive, fuzzy, etc. Each theorem

could then be assigned a number between zero and one characterizing its valid-

ity, to be calculated from the proofs label, vintage (see above), and the validities

of the theorems on which it is based. These controversial calculations would

themselves become the subject of a new field of research...

Research Announcements

I agree with the authors' list of problems with speculative mathematics.

I think their prescriptions are sensible, except for doing away with research

announcements. Research Announcements, as published in this Bulletin, are a

Good Thing! In them I often read interesting accounts of striking new results

in fields I'm not expert in. It would not occur to the authors to send me their

results in preprint or electronic form, since they don't know I'd be interested.

And I am sure that I will not read the complete proofs—it is the clear and

succinct statement of important results, along with some indication of method,

and some independent reassurance of correctness, that I value in R.A.s.

The advantage of an R.A. over the complete proof is that it is published

more quickly. A second advantage is that it is subject (in current practice) to

1 A peculiar converse phenomenon is that of a reliable mathematician raising doubts about a

long-accepted proof, then working hard (or assigning students) to correct it, only to eventually find

that in fact the original proof is correct. I have seen this happen twice with BirkhofPs proof of

Poincaré's Annulus Twist theorem.
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rigorous scrutiny by the editors, who I understand insist on seeing some writeup

of the proof. This can only improve the complete version. This of course is a

lot of work for the editors, and no doubt expensive for the AMS—but in my

view R.A.s make a unique and valuable contribution.

If we had more R.A.s there would be less excuse for premature presenta-

tions of speculative results—the rejoinder would be, "Why don't you publish a

Research Announcement?"
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In the July 1993 issue of this Bulletin, Arthur Jaffe and Frank Quinn have
speculated about a possible synthesis of mathematics and theoretical physics.

On the way they make many interesting observations. However, in my view,

their main proposal is both hazardous and misconceived.

In the fall of 1982, Riyadh, Saudi Arabia, was the seat of the First Interna-
tional Conference on Mathematics in the Gulf States. Michael Atiyah attended,

and provided outstanding advice to many of the younger conferees; I admired

his insights. One evening, one of our local hosts gave an excellent dinner for a

number of the guests; in his apartment we feasted on the best lamb (prepared

by his wife, who did not appear). After this repast, we all mounted to the roof

of the apartment house, to sit at ease in the starlight. Atiyah and Mac Lane

fell into a discussion, suited for the occasion, about how mathematical research

is done. For Mac Lane it meant getting and understanding the needed defini-

tions, working with them to see what could be calculated and what might be
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true, to finally come up with new "structure" theorems. For Atiyah, it meant

thinking hard about a somewhat vague and uncertain situation, trying to guess

what might be found out, and only then finally reaching definitions and the

definitive theorems and proofs. This story indicates that the ways of doing

mathematics can vary sharply, as in this case between the fields of algebra and

geometry, while at the end there was full agreement on the final goal: theorems

with proofs. Thus differently oriented mathematicians have sharply different

ways of thought, but also common standards as to the result.

Jaffe and Quinn misappropriate the word "Theoretical" as a label for what

is really speculation. This will not do; the word "Theory" has a firm mathemat-

ical use, as in the Theory of a Complex Variable or the theory of groups. In

Jaffe-Quinn, I note also their complete misunderstanding of the recently accom-

plished classification of all finite simple groups. It was not primarily a matter

of organization or of "program", but one of inspiration, from the early ideas

of Richard Brauer (Int. Congress 1954), the work of Hall-Higman, the famous

odd-order paper of Feit and Thompson, and the striking discovery of new spo-

radic simple groups, as with the Janko group and the Fischer-Greiss Monster,

plus a decisive summer conference in 1976. A small part of the classification

is not yet published—that for certain thin subgroups. Here and throughout

mathematics, inspiration, insight, and the hard work of completing proofs are

all necessary. No guide from physics can help, and the occasional suggestion

(Atiyah) that this classification should be all done conceptually or geometrically
has not (yet?) worked out.

The sequence for the understanding of mathematics may be:

intuition, trial, error, speculation, conjecture, proof.

The mixture and the sequence of these events differ widely in different domains,

but there is general agreement that the end product is rigorous proof—which

we know and can recognize, without the formal advice of the logicians. In

many parts of geometry, differential topology, and global analysis the intuitions

are very complex and hard to reduce to paper; as a result there can be a long

development before closure. An example is the brief paper of Kirby establish-

ing the annulus conjecture by using a sequence of known work to reduce the

conjecture to a question of homotopy theory. In each case, the ultimate aim is

proof; for example, the review of a 1988 paper by Goretsky and MacPherson in

Mathematical Reviews states "This long article completes proofs of results that

the authors have been announcing since 1980." I surmise that much of the delay

was needed to get matters in order, but the old saying applies "Better Late than

Never", while in this case "never" would have meant that it was not mathemat-

ics. For the Italian geometers at the turn of the century the better late was very

much later; the Italian intuitions needed—and encouraged—the working out of

many rigorous algebraic and topological methods by a long array of experts: van

der Waerden, Krull, Zariski, Chevalley, Serre, Grothendieck and many others.

Intuition is glorious, but the heaven of mathematics requires much more. As a

result, Zariski and Grothendieck clearly outrank all the Italians. Mathematics

requires both intuitive work (e.g., Gromov, Thurston) and precision (J. Frank

Adams, J.-P Serre). In theological terms, we are not saved by faith alone, but
by faith and works.

Conjecture has long been accepted and honored in mathematics, but the
customs are clear. If a mathematician has really studied the subject and made
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advances therein, then he is entitled to formulate an insight as a conjecture,

which usually has the form of a specific proposed theorem. Riemann, Poincaré,

Hubert, Mordell, Bieberbach, and many others have made deep such conjec-

tures. But the next step must be proof and not more speculation. On the

Poincaré hypotheses, Henry Whitehead published an erroneous proof but soon

recognized the gaps; later, listening to proposed proofs by others, he could say

"And now you do this ... and then that ..." to the needed effect. Sadly he was

not on hand at the recent false claim made for the Poincaré hypothesis in the

New York Times, but other experts in Kirby's seminar were at hand. False and

advertised claims have negative value, even in these days of undue pressure to

publish. The New York Times, in this and other recent flamboyant cases, does

not classify as a refereed journal.

Speculation, unlike conjecture, usually is a much less specific formulation of

some guess or insight; sometimes speculations can be combined into a program

or outline of possible further work. In the 1930s there was such a program for the

arithmetization of the class field theory, while the current Langlands proposals

provide such a program in non-abelian class field theory and its connections to

representation theory. Programs, good and diffuse, come in all sizes and with

very different prospects. Good programs depend on insight; their execution

requires proof.

Errors, alas, abound; no one is immune, but the more egregious ones often

arise from overly hasty confidence that some insight can be filled in later by some

technique. On occasion, some leading journals (The Annals of Mathematics)

have been sometimes careless in not checking for errors in papers on fashionable

subjects. Moreover, when error is discovered, the journal should publish a

retraction, so that all workers may know. Some notable errors, such as Dehn's

lemma, have been a stimulus to subsequent work, although Max Dehn himself,

in this country after 1933, did not profit. In one more recent case a published

error was overcome in a long paper of several hundred pages. The reviewer

remarked "This paper is written in great detail, sometimes almost too much,

but this is not a bad thing, given the long record of incorrect proofs in this

subject." This states clearly the goal: It is not mathematics until it is finally
proved.

The recent fruitful interchange of ideas (connections, fiber bundles, etc.)

with physics (quantum gravity and all that) has been a decided stimulus and a

source of new ideas and reapplication of old ones. It's great, but involves some

of the current weaknesses of physics. Thus, when I attended a conference to

understand the use of a small result of mine, I heard lectures about "topological

quantum field theory", without the slightest whiff of a definition; I was told

that the notion had cropped up at some prior conference, so that "Everybody

knew it." Much the same may apply to "Quantum groups", which are not

groups. This practice reflects carelessness, sloppy thinking, and inattention to

established terminology, traits which we do not need to copy from the physics

community. There, it was said that one person asked another "What are you

working on?"; "String theory"; "Oh, didn't you know, that went out of fashion

last week." We are fortunate that mathematics has a more permanent character

and is not (at least yet) bound to concentrate everybody in the latest thing. The
Lord's house has many mansions.

For other and deeper reasons I cannot share the enthusiasm of Jaffe-Quinn
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for physics. Their comparison of proofs in mathematics with experiments in

physics is clearly faulty. Experiments may check up on a theory, but they may

not be final; they depend on instrumentation, and they may even be fudged.

The proof that there are infinitely many primes—and also in suitable infinite

progressions—is always there. We need not sell mathematics short, not even to

please the ghost of Feynmann.

Since World War II, physics has played a dominant role in American sci-

ence. But today, it faces serious troubles. The standard theory requires the

existence of a "Higgs Boson", which has not yet been found; searching for it

requires the Superconducting Supercollider, costing billions and requiring an-

nual appropriation. Then Relativity Theory has led to plans for tests of the

existence of gravity waves in an expensive LIGO (Laser Interferometry Gravity

Wave Observatory). The study of the Big Bang appears to mix speculation and

science. Senior physicists have time to write popular books on the "Final The-

ory". For younger physicists it can be hard, with problems depending on the

funding for big apparatus or on papers with 190 authors. One such youngster

(David Lindler) recently broke ranks to write a book The End of Physics; his

main contention is that cosmologists and theoretical physicists encourage each
other to wider and wilder speculations.

Physics has provided mathematics with many fine suggestions and new

initiatives, but mathematics does not need to copy the style of experimental
physics. Mathematics rests on proof—and proof is eternal.

Benoit B. Mandelbrot

Mathematics Department

Yale University

New Haven, CT 06520-8283
fractal@watson.ibm.com

Unfortunately, hard times sharpen hard feelings; witness the discussion (to

be referred to as JQ) that Arthur Jaffe and Frank Quinn have devoted to diverse

tribal and territorial issues that readers of this Bulletin usually leave to private
gatherings. Those readers — you! — like to be called simply "mathematicians".

But this term will not do here, because my comment is ultimately founded on
the following conviction:

For its own good and that of the sciences, it is critical that mathe-
matics should belong to no self-appointed group; no one has, or should

pretend to, the authority of ruling its use.

Therefore, my comment needs a focussed term to denote the typical mem-

bers of the AMS. Since it is headquartered on Charles Street, I propose (in this
comment, and never again) to use "Charles mathematicians".

The reason I agree to respond to JQ is that informal soundings suggest

that—save for minor reservations—Charles mathematicians tend to admire it.

To the contrary, I find most of it appalling. Least among my reasons is the

manner in which JQ refers to my work (to this, I shall respond toward the end
of this piece).
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My main objection to JQ is that, in their search for credit for some indi-

viduals at the expense of others they consider rogues, they propose to set up

a police state within Charles mathematics, and a world cop beyond it borders.

How far beyond? They do not make it clear. Indeed, "technical mathematics"

is not only a silly term, but also empty, unless it is applied to nearly every field

outside Charles mathematics. Everyone is enchanted when seemingly disparate

problems turn out to have a common solution. How attractive, therefore, if

the same treatment could be applied to all "theoretical mathematicians"! But

politics is more complicated than any science, and the term "theoretical mathe-

maticians" does not apply to any self-defined entity. Therefore, this discussion

of JQ must deal separately with Charles mathematicians, and with others.

Let us begin with the latter. In their concern about the relations between

mathematicians and physicists, JQ bemoans that "students in physics are gen-

erally indoctrinated with anti-mathematical notions and ... often deny their

work is incomplete." To change the situation, JQ does not propose anything

like a negotiation between equals, only a prescription (their word). They tell

those foreigners which proper behavior would increase the happiness of a few

Charles mathematicians. Clearly, the prescription will only be heard by the

very few already conditioned to heed it. Why should scientists care about credit

to Charles mathematicians, given the Charles mathematicians' own atrocious

record in giving credit. The pattern—sad to say—is an acknowledgment that

"it is natural to take this tack or that" (when a physicist has sweated to establish

that this is indeed "natural") or an acknowledgment that "physicists believe"

(which physicists?) or "the computer has shown" (the computer by itself? or

perhaps some unmentioned "technician").

However, the main reason why I find the JQ prescription appalling is because

it would bring havoc into living branches of science. Philip Anderson describes
mathematical rigor as "irrelevant and impossible". I would soften the blow by

calling it "besides the point and usually distracting, even where possible". As

a first example, take the statistical process of percolation. It involves a clearly

mathematical construction discovered by Hammersley, a mathematician, but

it soon fell into the hands of theoretical physicists. They gradually discovered

that percolation illustrates hosts of natural phenomena of interest to them, and

they established an extraordinarily long list of properties (many of which, may

I add, are fractal in character). In the meantime, the mathematicians (and their

numbers include truly distinguished persons) have lagged way behind. They

have brought little that my physicist friends find valuable. Anyone who will

give rigorous solutions to this enormously difficult problem will deservedly be

hailed in mathematics, even if the work only confirms the physicists' intuition.

I hope that proper credit will be given to individual physicists for their insights,

but fear it will not. Will this mathematics be also noticed by phycisists? Only if

they prove more than was already known, or if the rigorous proofs are shorter

and/or more perspicuous than the heuristics.

Needless to say, everyone knows that mathematical physics overlaps with

a community of physicists devoted to "exact results". But, for all practical

purposes, these brilliant people have crossed over to become Charles mathe-

maticians. The same has happened to whole disciplines. Take mathematical

statistics. Jerzy Neyman disciplined his followers to practice the most exacting

rigor (even though their results are of interest to hardly any Charles mathemati-
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cian). Now that the long shadow of Neyman has waned, the mood has changed,

and mathematical statistics has been freed to seek a place in the community of
sciences. But if the JQ prescription were applied to it, it would die once again.

Now let me move back from foreign to internal affairs. Many Charles math-

ematicians are offended that a few major players have been well rewarded for

"passing" statements as if they were proven theorems. The fear is expressed,

that the person who will actually prove these assertions will be deprived of

credit. I think this is an empty fear because the AMS already has countless

ways of rewarding or shunning whomever it chooses. Even if one could agree

with the goals of JQ, I would contend that, in order to avoid "problems" caused

by current custom, there is the need of altering a community's present rules

of behavior. Moreover, I do not agree with the goals of JQ, because I find

them destructive. My reading of history is that mankind continually produces

some individuals with the highest mathematical gifts who will not (or cannot)

bend to pressures like those proposed by JQ. If really pressured, they will leave

mathematics—to everyone's great loss.

My first witness will be the probabilist Paul Levy (1886-1971). (Moving
back in time adds perspective!) The French-style Charles mathematicians of his

time kept blaming him for failure to prove anything fully (and for occasional

lapses in elementary calculations!). There was no field where he could flee away

from Charles mathematics, but he did not change. He went on, well into his

seventies, producing marvelous and startling intuitive "facts" that may have

been "incomplete" yet continue to provide well-rewarded work for many. Yet,

when he was 71 (and I was a junior professor working for him), he continued

to be prevented from teaching probability, part of a pattern of tormenting him

in every way conceivable. Question: Who gained?

My second witness will be Poincaré himself. In the recently published letters

from Hermite, his mentor, to Mittag-Leffler, there are constant complaints about

Poincaré's unwillingness to heed well-intentioned advice and polish and publish

full proofs. Concluding that Poincaré was incurable, Hermite and E. Picard

(who inherited his mantle) shunned Poincaré, prevented him from teaching

mathematics, and made him teach mathematical physics, then astronomy. His

published lecture notes cover basic optics, thermodynamics, electromagnetism:

a second- or third-year "course in theoretical physics". It may well be true

that Poincaré's 1895 Analysis Situs remained for quite a while a "dead area".

Questions: Who was harmed? Would the world have been a happier place if

Poincaré, awed by Hermite and his cohorts, had waited to publish until he knew

how to irrigate this dead area?

One could bring other witnesses, but few as great as Poincaré and Levy. Why

were there so few like them during the recent period? One possible reason lies in

the flow of young people who kept being introduced to me for advice. They were

acknowledged as brilliant and highly promising; but they could not stomach the

Bourbaki credo, hence saw no future for themselves in mathematics. Bystanders

who understood what was happening asked me to help these young people to

hang on, but there was no way. They did not straighten up but scattered, at a
loss, as I see it, both for themselves and for mathematics.

Before concluding this response to JQ, let me say that I am disappointed that

JQ should mention me, without adding that whenever I see in my work some-

thing that might interest Charles mathematicians, I make it a point of seeking
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out their attention and describing what I had done as a conjecture, therefore a

challenge to be either proven or disproven, within the usual standards of rigor.

It is a delight that—in all the branches I touched, harmonic analysis, probability

theory and (most widely known) the theory of iteration of functions—brilliant

people promptly took up my challenge, and were led to beautiful theorems.

What about credit, an issue that dominates JQ? For the proofs of my con-

jectures, full credit is due, and no one denies it. For pioneering the use of

computer graphics in mathematics, raising the problems and making early con-

jectures, full credit is also due. But to my regret many Charles mathematicians

extend it with undisguised reluctance. Coming from my uncle Szolem (1899-

1993) and other persons I like to admire without reservation, this reluctance

used to be annoying. Luckily, I have long known that it does me no harm,

thanks to public acclaim from sources free of the biases and hangups of Charles

mathematics.

For this reason, I am dismayed that JQ should bring in S. C. Krantz as
"an expression of the mathematical discomfort with my activity." Beyond "ex-

pressing discomfort", Krantz also tries to justify it by anecdotes (one of his

specialties) based on imagined "facts" and wrong dates, as I have shown in the

foreword I wrote to the book Fractals for the Classroom, Part I, by H-O. Peit-

gen, H. Jürgens, and D. Saupe (Springer 1991). Had I not expected Krantz's
press releases and other utterings to sink promptly into oblivion, I would have

answered in a more public forum. But, since his opinion has surfaced in JQ it

is important to refer to my full rebuttal.

In its concentration on credit and its overbearing attitude towards proven

and successful domains that are clearly outside of Charles mathematics, the

JQ piece is in dreadful bad taste. Its complaint that rigor is threatened is no
more true today than it was in the midst of Bourbaki's domination. Its attitude

towards Charles mathematician rogues would, if it returns to power, deprive

us of future Poincarés and Levys. Let me, however, end on a positive note.

It is a pleasure that JQ do not put into question the recent improvements in

the mood between mathematics and its neighbors. The best borders are open

borders that allow nominal physicists to be praised for their mathematics and

nominal mathematicians to be praised for their physics.

David Ruelle

Institute des Hautes Etudes Scientifiques

35 Rue de Chartres
91440 Bures-sur-Yvette
France

Dear Dick,

Thank you for soliciting my opinion on the Jaffe-Quinn paper. I am glad

that this paper will appear in the BAMS, because it raises issues that deserve to
be discussed. Since my own feelings are not extremely strong however, let me

just express a few comments in the form of this letter to you, from which you
will feel free to quote or not to quote.

Nobody will question the need to indicate if something presented as a
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"proof is really a complete, rigorous, mathematical proof, or something else

(to be specified). For example in the study of the "Feigenbaum fixed point"

there is no quarrel: Feigenbaum's argument is profound and convincing, but

does not claim to be mathematically rigorous. In other cases things are less
clear. Kolmogorov did not publish a proof for the "K" of "KAM", but Yasha

Sinai tells me that Kolmogorov gave lectures amounting to a full proof of "K"

in the case of two degrees of freedom.

One point that perhaps deserves being stressed is the usefulness of cultural

cross-fertilization in mathematics. Feigenbaum's cultural background in theo-

retical physics has allowed him to discover a new generic bifurcation of smooth

dynamical systems, which would not have been encountered soon by following

standard mathematical paths. Similarly, the physical ideas of equilibrium statis-
tical mechanics have richly contributed to the mathematical theory of smooth

dynamical systems (with the concepts of entropy, Gibbs states, etc., see my

note in BAMS(NS) 19 (1988), 259-268. The importance for pure mathematics
of ideas coming from theoretical physics is of course well known to Jaffe and

Quinn, and they are right in insisting that, with a little bit of care, mathematics

can benefit from these ideas without paying an exorbitant price.

Albert Schwarz

Department of Physics

University of California at Davis

Davis, CA 95616
asschwarz@ucdavis.edu

I agree completely with A. Jaffe and F. Quinn that heuristic ("theoretical")
work can be very useful for mathematics, but that it is necessary to establish

the rules of interaction between heuristic and rigorous mathematics. However I

would like to suggest somewhat different rules. I'll begin with a short exposition

of my opinion and give some explanations at the end of my letter as footnotes.

1. I don't think that the name "theoretical mathematics" as a common

name for heuristic mathematics and theoretical physics is appropriate. A. Jaffe

and F. Quinn consider only the part of theoretical physics that is not closely

related to the experiment, but this does not change the picture. The main aim

of theoretical physics is to explain experimental data or to predict the results

of experiments. Many physicists believe now that string theory can explain

all interactions existing in nature. However today they are not able to extract

reliable predictions from string theory because this is connected with enormous

mathematical difficulties. The physicists have chosen the only possible way: to

analyze carefully the mathematical structure of string theory. This approach led

to beautiful mathematical results, but still did not give the possibility to solve

realistic experimental problems. (*)

String theorists believe that finally they will be able to give a formulation
of TOE ("theory of everything") on the base of string theory and to make all

calculations on this base. Other theoretical physicists have a doubt that string
theory is related to the physics of elementary particles at all. However in any

case the string theorists and all other theoretical physicists have the same goal
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and the same psychology. The fact that the string theorists use complicated
mathematical tools and that their papers contain very important contributions
to pure mathematics does not mean that they became mathematicians. Of

course at a personal level the borderline is not so sharp. There are scholars that

can be considered as physicists and as mathematicians at the same time; there

are many papers that belong simultaneously to theoretical physics and heuristic

mathematics.

Mathematics is not necessarily characterized by rigorous proofs. Many ex-

amples of heuristic papers written by prominent mathematicians are given in

[1]; one can list many more papers of this kind. All these papers are dealing

with mathematical objects that have a rigorous definition^**) However a math-

ematician reading a textbook or a paper written by a physicist discovers often

that the definitions are changed in the process of calculation. (This is true for

example for the definition of scattering matrix in quantum field theory.)

It would be meaningless to try to establish formal rules of interaction be-

tween mathematics and theoretical physics. Therefore I'll talk only about rules

of interaction between rigorous and heuristic mathematics. This means that I

always have in mind that the papers under consideration are based on rigorous
definitions.

2. It is suggested in [1] that the "theorists" should label their statements as

conjectures. I agree that the word "theorem" should be reserved for rigorously

proven statement, but it would be arrogant to insist that heuristic mathematics

can produce only conjectures. The "conjectures" in the sense of [1] are of very

different nature in the range from wrong to completely reliable (***). I believe

that in heuristic papers one should avoid the word "theorem", using instead the

words "pretheorem", "fact", "statement" and, of course, "conjecture". I borrow

the word "pretheorem" from the book [2] together with the explanation: The

word "pretheorem" should mean that there exists at least one set of technical

details supporting a theorem of the sort sketched. The word "fact" could mean

statement that is not proven rigorously, but is considered by the author as re-

liable (****). The word "statement" can denote an assertion provided with a

heuristic proof that cannot be extended to a rigorous proof without essential

new ideas. Finally, the word "conjecture" should be understood as a statement

supported not by a heuristic proof, but by an analogy, examples, etc.

The suggestion of [ 1 ] about flags indicating heuristic character of the paper

sounds reasonable. However, as I mentioned already, heuristic papers are of a

different nature, therefore these flags should be of different colors.(*****) This

would be in complete agreement with the Jaffe-Quinn suggestion, but more
acceptable for authors of heuristic papers.

3. There is no doubt that a mathematician that gave a rigorous proof of a

statement heuristically proved by another mathematician or physicist deserves

essential credit. However I don't think that one can say a priori that "a major
share of credit for the final result must be reserved for the rigorous work." Some-

times this is true. For example in constructive quantum field theory rigorous

proofs are often a hundred times harder than heuristic considerations. In this

case complaints that physicists underestimate the work of mathematicians are

completely justified. However sometimes the final stroke requires only careful

student's work. (By the way, filling gaps in a heuristic paper of this kind or in

a research announcement would be an extremely valuable part of a student's

education.)
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4. It is important to stress that heuristic mathematics is a legitimate part
of mathematics. ( Now this is recognized only in mathematical physics. A cru-

cial role in this recognition was played by the policy of the editorial board of
Communications in Mathematical Physics headed by A. Jaffe.) In the ideal case

every rigorous mathematician has to work also heuristically and every author of

a heuristic paper fully recognizing the importance of rigor has to try to prove

his results rigorously. Every mathematician begins his work with heuristic con-

siderations, as emphasized in [1]. If he obtained an interesting result, he should

try to give a rigorous proof of it. However if he did not succeed in this attempt,

he can publish the result with a heuristic proof with a hope that somebody else

will be able to finish the work. In our age of division of labor it is difficult to

understand why both parts of the work must be necessarily done by the same

person. Nevertheless most mathematicians are tied with an odd bias that only

rigorous results deserve publication. I hope that the discussion initiated by Jaffe

and Quinn will help to destroy this bias and instead of separation we will see

a community of scholars united by a common goal and sometimes acting as

rigorous mathematicians (if possible), sometimes writing heuristic papers (if
rigorous methods do not work).

(*) Such a situation is not completely new in physics. It took about 20 years

to give a correct formulation of mathematical problems arising in quantum

electrodynamics and to solve these problems in the framework of perturbation

theory. (I have in mind the invention of renormalization theory.) The way

from the introduction of gauge fields to the quantization of these fields and to

the construction of gauge theories giving a description of electromagnetic, weak
and strong interactions was only a little bit shorter.

(**) This does not mean that all definitions are formulated precisely. Some-

times it is convenient to leave some freedom in a definition used in a heuristic

paper. However this means only that we work with several rigorous definitions
at the same time.

(***) Let me give an example. In 1987 I conjectured that the Jones polyno-

mial can be obtained from quantum field theory. This conjecture was inspired

by the conversation with V. Turaev. Turaev told me that V. Jones invented an

invariant of knots, that can be considered as a generalization of the Alexander

polynomial. He thought that the application of the general method of construc-

tion of topological invariants by means of quantum field theory suggested by me

in 1978 [3] could give an explanation of the origin of the Jones invariant. (The

Alexander polynomial can be expressed in terms of Reidemeister torsion and

my paper contained construction of the smooth version of the Reidemeister tor-

sion, the so-called Ray-Singer torsion.) Answering Turaev's question, I found a

Lagrangian (Chern-Simons Lagrangian) giving invariants of three-dimensional
manifolds and conjectured that these invariants are connected with the Jones

polynomial [4]. A year later a heuristic proof of this conjecture was given in a
brilliant paper [5] by Witten (who knew my paper of 1978, but did not know

the paper [4]). Of course, Witten went much further than I. (I consider the con-

tribution of [4] as negligible in comparison with [5] or [3].) The constructions
of his paper (in particular, the connection with two-dimensional conformai the-

ory) were exploited later in hundreds of papers and led not only to heuristic, but

also to important rigorous results. But in the terminology advocated in [1] the
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difference between Witten's and my statements disappears: both are qualified

as conjectures!
(****) Mathematicians often underestimate the reliability of heuristic proof.

Probably, the results of a good mathematician, working heuristically, are not less

reliable than the results of an average rigorous mathematician. (One can con-

sider this statement as a definition of a good mathematician.) Mathematicians

know that a formal proof leads always to a correct result, but they forget some-

times that they are human beings ("Errare humanum est"). Therefore erroneous

"rigorous" papers are not so rare. Heuristic methods are not completely reliable,

therefore the scholars using these methods have to apply all possible checks to
guarantee reliability of their results. However as stressed in [1] a rigorous proof
gives often new insights and new results, therefore it is necessary also in the

case when the statement is completely reliable. Let me illustrate this fact by the

following example. Gauss found by direct calculation that the length of a cer-

tain curve coincides with great accuracy with some arithmo-geometric average.

Of course, he conjectured that these two numbers coincide precisely. Calculat-

ing more and more digits, he could make the probability that this conjecture is

violated as low as wanted. Instead he gave a rigorous proof discovering some

properties of elliptic functions, that definitely are much more interesting than

the conjecture itself. Probably, we will have a similar situation with some con-

jectures about mirror symmetry. The coincidence of some numbers predicted

by mirror symmetry was checked in so many cases, that it is almost impossible

to doubt the correctness of these conjectures . Nevertheless neither physicists

nor mathematicians are satisfied. They would like to know the reason for this
coincidence.

(*****) I would like to list some of the possible cliches.

A . The paper contains a complete rigorous proof.

B. The paper contains no proofs (or: The proofs are only sketched), but

the author gave detailed rigorous proofs of all results of the paper.

B\ = B+ The proofs are written and available upon request.

Bi = B+ The author is planning to write the proofs not later than...

53 = B+ The author is not planning to write detailed proofs. He would be
ready to help anybody willing to perform this work.

C. The paper is addressed to physicists. Therefore the results are not

formulated as mathematical theorems. However it is easy to give conditions

making the proofs completely rigorous.

D. The proofs in the paper are rigorous, but they are based on some

statements of the paper ...  having only heuristic proofs.

E. The proof given in the paper cannot be considered as complete, but

the author believes that the gaps in the proof can be filled in without essentially
new ideas.

E¡ = E + ...
F . We give a heuristic proof of our statements. A rigorous proof cannot

be obtained by our methods.

A. Jaffe and F. Quinn propose to publish research announcements only

in the case when the complete paper is already written and refereed. They

think that this is possible because the announcements can be distributed via

e-mail as preprints. However one can use e-mail to distribute a complete paper
too!   I believe that pretty soon scientific journals will publish only research
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announcements (together with information on how to get complete proofs via

e-mail), review papers and extremely important papers. For me personally it is

easier already to find a paper that I am interested in by means of an electronic

bulletin board, than in the library.
I am indebted to J. Hass, C. Tracy, and especially to Yu. Manin for very

useful discussions.
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The article by Arthur Jaffe and Frank Quinn has been a dynamic, healthy

catalyst for many interesting discussions about mathematics. I am very much of

the conviction that mathematics is much more than the bare and beautiful struc-

ture as exposed by Bourbaki and as appreciated by myself before I had research

experience. Interest in mathematics from a broader-than-usual perspective is
presumed and advocated by the authors.

I agree with many of the points of the article. Pure mathematicians really

ought to prove their theorems and publish their results in a clear and under-

standable paper written in a timely fashion. What we may need, in addition to

the "mathematica rejecta" journal dreamed of in my youth, is the "mathematica

culpa" elder journal? Some of the younger mathematicians could be sent there

for extreme sins, as well as us older folk who tend to end up here as a way of
life.

My main criticism of the article is that it draws broad conclusions from

too narrow a perspective. The relationship between physics and mathematics

has been fundamental to both for a long time. The gap between the two is

significant primarily in this century, as pure mathematics became very abstract,
experimental physics became very expensive, and the world became more com-

plicated. However, even through this century, mathematics has relied on physics

for input quite steadily. I am sure other replies will point out the influence of

mechanics on calculus, optics on Riemannian and symplectic geometry, general

relativity on differential geometry, quantum mechanics on functional analy-

sis, geometric optics on harmonic analysis, and gauge theory on four-manifold
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topology. This did not take place "neatly". The list would be much longer if

we included input from all sciences.

Hence, I feel that the article makes exactly the wrong point about influence

on young mathematicians. I well remember that as an undergraduate I was initi-

ated into the mysteries of distributions by being told by a graduate student that
physicists had used them, but understood nothing important about them. Only

an innovative and brilliant mathematician like the idolized Laurent Schwartz

could make sense of the physicists' nonsense. Unfortunately, this attitude was

reinforced during my formative years by both mathematicians and physicists.

Mathematicians seemed to think that physicists did not do physics "right", while

physicists thought of mathematicians as worthless insects. Only after taking part

in the mathematical development of gauge theory could I comprehend the es-

sential importance of outside ideas in mathematics and the contrary possibility
of mathematical language being of real use outside the discipline itself.

I find it difficult to convince students—who are often attracted into math-

ematics for the same abstract beauty and certainty that brought me here—of

the value of the messy, concrete, and specific point of view of possibility and

example. In my opinion, more mathematicians stifle for lack of breadth than

are mortally stabbed by the opposing sword of rigor.
As you can see, in the first part of my answer, I basically agree with all the

premises of the article. I have serious objections of another sort to the idea of

creating a discipline called "theoretical mathematics". Setting aside the seman-

tics, in the broader context of its description, "theoretical mathematics" already
exists. It is called "applied mathematics", a much bigger field than pure mathe-

matics. Applied mathematics is done mostly outside departments of mathemat-

ics and draws in far more resources and many broad scientific interests. Only

the combined elitism of very pure mathematics and high-energy fundamental

physics would claim that its own brand of speculative and applicable mathemat-

ical structure should have a special name. Would nonlinear dynamics, which

has an active and interesting interface with other sorts of physics, qualify as the-

oretical mathematics? What about mathematical biology, which may be held

back by lack of mathematical attention to handling complex information. Some

claim this field desperately needs mathematical insight. I would very much like

to see the dialogue started by Jaffe and Quinn extended to cover glories and

disasters of interaction between pure mathematics and the many other more

applied areas of relevance.

In conclusion, pure mathematicians might well spend even more time build-

ing intellectual bridges to the rest of the scientific world. Jaffe and Quinn imply
that it would help to collect a toll for crossing one of few well-built bridges.

They have, however, done a great service by describing it in detail as worthy of
tariff.
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René Thorn

Institute des Hautes Etudes Scientifiques
35 Rue de Chartres
91440 Bures-sur-Yvette
France

Dear Dick,
Many thanks for your letter of May 21st with the enclosed article by Arthur

Jaffe and Frank Quinn. I have many reasons to be interested in it, not only

because I am personally implicated in the "Cautionary Tales". There, I can

only confirm that the description of my evolution with respect to mathematics

is fairly accurate. Before 1958 I lived in a mathematical milieu involving es-

sentially Bourbakist people, and even if I was not particularly rigorous, these

people—H. Cartan, J.-P. Serre, and H. Whitney (a would-be Bourbakist)—

helped me to maintain a fairly acceptable level of rigor. It was only after the

Fields medal (1958) that I gave way to my natural tendencies, with the (even-

tually disastrous) results which followed. Moreover, a few years after that, I

became a colleague of Alexander Grothendieck at the IHES, a fact which en-

couraged me to consider rigor as a very unnecessary quality in mathematical

thinking. I somewhat regret that the authors, when quoting my work in singu-

larity theory, did not emphasize its positive aspects, namely, the transversality
lemma (with respect to jet systems), the theory of stratified spaces (allowing for

some anticipatory work by H. Whitney and S. Lojasiewicz), the characterization

of "gentle maps" (those without blowing up), the II and III isotopy lemmas. All

this was written for the first time in my unrigorous papers. Of course many

people (Milnor, Mather, Malgrange, Trotman and his school, McPherson, to

quote just a few) may claim to have a large part in the rigorous presentation of
this theory.

This leads me to the Jaffe-Quinn paper itself, which involves a very impor-

tant question, and provides, I think, the first occasion (apart from some solemn

observations of S. Mac Lane) for an in-depth discussion on mathematical rigor.

I do still believe that rigor is a relative notion, not an absolute one. It depends
on the background readers have and are expected to use in their judgment. Since

the collapse of Hubert's program and the advent of GödePs theorem, we know

that rigor can be no more than a local and sociological criterion. It is true that

such practical criteria may frequently be "ordered" according to abstract logical
requirements, but it is by no means certain that these sociological contexts can
be completely ordered, even asymptotically.

One main argument of the Jaffe-Quinn paper is that we have to know, when

we want to use it for further research, if a published result may be considered as

"firm" as another, whether its validity may be universally accepted. My feeling

is that it is unethical for a mathematical researcher to use a result the proof of

which he does not "understand" (except for the specific case where he wants

to disprove the result). In principle, of course, understanding here means a

thorough knowledge of all the arguments involved in the written proof. From

this viewpoint, it may not be as necessary as is usually thought to classify all

known truths in a universal library. But finally I think the proposal of the

authors, to establish a "label" for mathematical papers with regard to their rigor
and completeness, is an excellent idea.
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Rigor is a Latin word. We think of rigor mortis, the rigidity of a corpse. I
would classify the (would-be) mathematical papers under three labels:

1) V^^ a crib, or baby's cradle, denoting "live mathemat-

ics", allowing change, clarification, completing of proofs, objec-

tion, refutation.

2) f the tombstone cross. Authors pretending to full rigor,

claiming eternal validity, may use this symbol as freely as they

wish. This kind of work would constitute "graveyard mathemat-

ics".

3) ml       the Temple. This would be a label delivered by an
external authority, the "body of high priests". This body could
initially be made up of the editors in chief of the "core" papers as

suggested by Jaffe-Quinn. Its task would be to bestow the label at

least on those   J   papers with sufficient promise to justify close

examination.   Later on, the IMU could decide on a permanent

procedure to establish the priestly body, allowing for a relatively

quick turnover of people in charge, with equitable worldwide geo-

graphic representation. One might suppose that such an institution

could last a very long time. Should it however eventually come to

grief, the unattainable nature of absolute rigor would be thereby
demonstrated.

Let me end with a personal observation. The Jaffe-Quinn paper discusses at

length the situation of mathematical physics, but does not seem to admit that the

problem   may   arise   in   other   disciplines   for   which   (unlike   physics)
E. Wigner's phrase about the "unreasonable effectiveness of mathematics" is

not valid.   I strongly disagree with such a restriction.   I see no reason why

mathematics (even without computers and numerical computation) should not

be applied in other disciplines, in biology for example. In particular I believe

that there are in analytic continuation singular circumstances (unfoldings, for

instance) where it may be applied in a qualitative way. (This echoes of course

my catastrophe theory philosophy.) Papers written in this state of mind are not
read by professional mathematicians, who see no need for communication with

any other disciplines apart from physics. And they are not intelligible to people

of the other speciality, who generally lack the necessary mathematical culture.

As a result they remain practically unread. The case may be defended of papers

which have to create their own readership; they are babies without parents.
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Edward Witten
School of Natural Sciences

Institute for Advanced Study

Princeton, NJ 08540
IN%"WITTEN@sns.ias.edu"

Jaffe and Quinn attempt to comment on the role in mathematics of some

contemporary developments in physics. I feel that the article (in the section

"New Relations with Physics") conveys a rather limited idea of the role in

physics of some of the new developments in question.

Let me first try in one paragraph to summarize the state of knowledge of
physics. (For a more extensive account, see the beginning of my article on

"Physics and Geometry" in the proceedings of the 1986 International Congress

of Mathematicians.) Gravitation is described at the classical level by general

relativity, which is based on Riemannian geometry. Straightforward attempts at

extending general relativity to a quantum theory have always led to extremely

severe difficulties. Other observed forces are described by a quantum gauge

theory (the "standard model"), whose construction involves (in addition to the

machinery of quantum field theory) the choice of a Yang-Mills gauge group

(SU(3) xSU(2) x U(l) encompasses the known interactions); a representation

of that group for charged fermions (experiment indicates a rather complicated

reducible representation, related to phenomena such as parity violation and the

fractional electric charges of quarks); and a relatively little understood mecha-

nism of symmetry breaking.

The main unsolved problems are generally considered to be to overcome

the inconsistency between gravity and quantum mechanics; to unify the various

other forces with each other and with gravity; and to understand symmetry

breaking and the vanishing of the cosmological constant.

In the early 1980s, it became clear—through the work of M. B. Green,

J. H. Schwarz, and L. Brink, building on pioneering contributions of others
from the 1970s—that string theory offered a framework (in my view the only

promising framework known) for overcoming the inconsistency between grav-

ity and quantum mechanics. Actually, that is a serious understatement. It is

not just that in string theory, unlike previous frameworks of physical theory,

quantum gravity is possible; rather, the existence of gravity is an unavoidable

prediction of string theory. In the early development of the theory, literally

dozens of papers were written in an unsuccessful effort to eliminate the features

that lead to the prediction of gravity.

By the early 1980s, it was fairly clear (from overwhelming circumstantial

evidence, not a mathematical theorem) that string theory made sense and pre-

dicted gravity, but it appeared extremely difficult to apply string theory to na-

ture. The reason for this was that at the time, it appeared impossible in the

context of string theory for the weak interactions to violate parity. Then in

1984, this difficulty was overcome as a result of a new theoretical insight, and

as a bonus the gauge group and fermion representation of the standard model

suddenly emerged rather naturally from the theory.

On a more theoretical side, supersymmetry (or bose-fermi symmetry; su-

pergeometry) is another general prediction of string theory. World-sheet su-

persymmetry was invented by P. Ramond in 1970 to incorporate fermions in
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string theory; fermions exist in nature, so this was necessary to make string

theory more realistic. Space-time supersymmetry was invented by J. Wess and

B. Zumino in 1974 based on an analogy with world-sheet supersymmetry. Ever

since then, supersymmetry has fascinated physicists, especially in connection to

the little-understood symmetry-breaking mechanism of the standard model. Su-

persymmetry is not an established experimental fact, though a possible partial

explanation for the measured values of the strong, weak, and electromagnetic

coupling constants based on supersymmetry has attracted much interest. There

is an active search for more direct experimental confirmation of supersymme-

try at high-energy accelerators; this is regarded by many as one of the prime

missions of the proposed Superconducting Supercollider.

The main immediate obstacle to progress in extracting more detailed experi-

mental predictions from string theory (beyond generalities such as the existence

of gravity) would appear to be that the vanishing of the cosmological constant

is not understood theoretically.

More fundamentally, I believe that the main obstacle is that the core geomet-

rical ideas—which must underlie string theory the way Riemannian geometry

underlies general relativity—have not yet been unearthed. At best we have been

able to scratch the surface and uncover things that will most probably eventually

be seen as spinoffs of the more central ideas. The search for these more cen-

tral ideas is a "mathematical" problem which at present preoccupies primarily

physicists. Some of the spinoffs have, however, attracted mathematical interest
in different areas.

In general, I think that the motivations for string theory in physics are much

stronger and more focussed than Jaffe and Quinn convey.

Sir Christopher Zeeman, FRS

Gresham Professor of Geometry

Hertford College
Oxford 0X1 3BW
England

Dear Dick,

Thank you for your invitation to respond to the paper by Jaffe & Quinn on
Theoretical Mathematics [1].

Their account of catastrophe theory is misleading, because René Thorn's

work on singularities [4] was firm. In his subsequent development of catastro-

phe theory he focused attention upon the key unsolved steps in the underlying

mathematics by making specific conjectures and encouraging Malgrange, Mather

and others to prove them. For example Malgrange writes in the introduction to
his 1966 book [2] on differentiable functions:

In particular, I consider it my duty to state that one of the main results,

"the preparation theorem for differentiable functions", was proposed

to me as a conjecture by R. Thorn, and that he had to make a great
effort to overcome my initial scepticism.
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In my own book [7] I gave a complete and mathematically rigorous proof

of the classification of elementary catastrophes of codimension < 5, and the

C°°-density of generic global parametrised functions. I also made a number of

scientific models and scientific predictions, several of which have been subse-

quently confirmed by experimentalists. This does not fit the description given

by Jaffe and Quinn of being "mathematically theoretical" (in their terminol-

ogy). In fact there have been hundreds of successful scientific applications of

catastrophe theory.

What controversy there was about catastrophe theory was short-lived for

two reasons: firstly the underlying mathematics was rigorous, and secondly the

critics were not scientists but a few journalists and mathematicians who were

ignorant of the science and did not fully understand the mathematics. For

example the scientific mistakes in [5] were answered in [6], and the mathematical

mistakes in [3] were explained in [8].

Turning to Jaffe and Quinn's main thesis, I applaud their appeal to authors

to distinguish more clearly between theorems and conjectures, and I deplore

their suggestion that the mathematical community should mimic the physics

community by separating those who make conjectures from those who prove

theorems. The best mathematicians have always done both, and always will.

References

1. A. Jaffe and F. Quinn, Theoretical Mathematics: Toward a cultural synthesis

of mathematics and theoretial physics, Bull. Amer. Math. Soc. 29(1993),
1-13.

2. B. Malgrange, Ideals of differentiable functions, Oxford Univ. Press, Oxford,
1966.

3. S. Smale, Review ofE.C Zeeman: Catastrophe theory, selected papers 1972-
1977, Bull. Amer. Math. Soc. 84 (1978), 1360-1368.

4. R. Thom, Les singularités des applications differentiables, Ann. Inst. Fourier
6(1956), 43-87.

5. R.S. Zahler and H. Sussmann, Claims and accomplishments of applied catas-
trophe theory, Nature 269 (1977), 759-763.

6. Correspondence on catastrophe theory, Nature 270 ( 1977), 381-384 and 658.

7. E. C. Zeeman, Catastrophe theory, selected papers 1972-1977, Addison Wes-
ley, Reading, MA, 1977.

8. E. C. Zeeman, Controversy in science: On the ideas of Daniel Bernoulli and

René Thom, The 1992/3 Johann Bernoulli Lecture, Groningen (to appear
in Nieuw Archief van de Wiskunde).


