Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Jr. E. F. Assmus, and J. D. Key
Title: Designs and their codes
Additional book information: Cambridge University Press, London and New York, 1992, x + 352 pp., US$69.95. ISBN 0-521-41361-3.

References [Enhancements On Off] (What's this?)

  • [1] E. F. Assmus, Jr. and H. F. Mattson, Jr., On the possibility of a projective plane of order 10, Algebraic Theory of Codes II, Air Force Cambridge Research Laboratories Report AFCRL-71-0013, Sylvania Electronic Systems, Needham Heights, MA, 1970.
  • [2] Th. Beth, D. Jungnickel, and H. Lenz, Design theory, Bibliographisches Institut Wissenschaftsverlag, Mannheim, Wien, Zürich, 1985. MR 779284 (86j:05026)
  • [3] D. R. Hughes and F. C. Piper, Design theory, Cambridge Univ. Press, Cambridge, 1985. MR 812053 (87e:05022)
  • [4] C. W. H. Lam, The search for a finite projective plane of order 10, Amer. Math. Monthly 98 (1991), 305-318. MR 1103185 (92b:51013)
  • [5] C. W. H. Lam, L. Thiel, S. Swiercz, and J. McKay, The nonexistence of ovals in a projective plane of order 10, Discrete Math. 45 (1983), 319-321. MR 704249 (84h:05028)
  • [6] J. H. van Lint, Introduction to coding theory, Graduate Texts in Math., vol. 86, Springer-Verlag, New York, 1982.
  • [7] J. H. van Lint and R. M. Wilson, A course in combinatorics, Cambridge Univ. Press, Cambridge, 1992. MR 1207813 (94g:05003)
  • [8] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, North-Holland, Amsterdam, 1983.
  • [9] F. J. MacWilliams, N. J. A. Sloane, and J. G. Thompson, On the existence of a projective plane of order 10, J. Combin. Theory Ser. A 14 (1973), 66-78. MR 0313089 (47:1644)

Review Information:

Reviewer: M. A. Wertheimer
Journal: Bull. Amer. Math. Soc. 31 (1994), 102-107
DOI: https://doi.org/10.1090/S0273-0979-1994-00485-9
American Mathematical Society