The moment map for a multiplicity free action

Authors:
Chal Benson, Joe Jenkins, Ronald L. Lipsman and Gail Ratcliff

Journal:
Bull. Amer. Math. Soc. **31** (1994), 185-190

MSC:
Primary 22C05; Secondary 22E30

DOI:
https://doi.org/10.1090/S0273-0979-1994-00514-2

MathSciNet review:
1260517

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let *K* be a compact connected Lie group acting unitarily on a finite-dimensional complex vector space *V*. One calls this a *multiplicity-free* action whenever the *K*-isotypic components of are *K*-irreducible. We have shown that this is the case if and only if the moment map for the action is finite-to-one on *K*-orbits. This is equivalent to a result concerning Gelfand pairs associated with Heisenberg groups that is motivated by the Orbit Method. Further details of this work will be published elsewhere.

**[1]**C. Benson, J. Jenkins, R. Lipsman, and G. Ratcliff.*A geometric criterion for Gelfand pairs associated with the Heisenberg group*, preprint. MR**1447402 (98i:22012)****[2]**C. Benson, J. Jenkins, and G. Ratcliff,*On Gelfand pairs associated with solvable Lie groups*, Trans. Amer. Math. Soc.**321**(1990), 85-116. MR**1000329 (90m:22022)****[3]**G. Carcanno,*A commutativity condition for algebras of invariant functions*, Boll. Un. Mat. Ital.**7**(1987), 1091-1105. MR**923441 (89h:22011)****[4]**L. Corwin and F. Greenleaf,*Spectrum and multiplicities for restrictions of unitary representations in nilpotent Lie groups*, Pacific J. Math.**135**(1988), 233-267. MR**968611 (90b:22011a)****[5]**I. M. Gelfand,*Spherical functions on symmetric spaces*, Dokl. Akad. Nauk USSR**70**(1950), 5-8; Amer. Math. Soc. Transl. Ser. 2, vol. 37, Amer. Math. Soc., Providence, RI, 1964, pp. 39-44. MR**0033832 (11:498b)****[6]**V. Guillemin and S. Sternberg,*Geometric quantization and multiplicities of group representations*, Invent. Math.**67**(1982), 515-538. MR**664118 (83m:58040)****[7]**-,*Multiplicity free spaces*, J. Differential Geom.**19**(1984), 31-56. MR**739781 (85h:58071)****[8]**G. J. Heckman,*Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups*, Invent. Math.**67**(1982), 333-356. MR**665160 (84d:22019)****[9]**R. Howe and T. Umeda,*The Capelli identity, the double commutant theorem and multiplicity-free actions*, Math. Ann.**290**(1991), 565-619. MR**1116239 (92j:17004)****[10]**V. Kac,*Some remarks on nilpotent orbits*, J. Algebra**64**(1980), 190-213. MR**575790 (81i:17005)****[11]**F. Knop,*A Harish-Chandra homomorphism for reductive group actions*, preprint. MR**1298713 (95h:14045)****[12]**R. Lipsman,*Orbit theory and harmonic analysis on Lie groups with co-compact nilradical*, J. Math. Pure Appl.**59**(1980), 337-374. MR**604474 (82b:22026)****[13]**-,*Orbital parameters for induced and restricted representations*, Trans. Amer. Math. Soc.**313**(1989), 433-473. MR**930083 (90a:22008)**

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC:
22C05,
22E30

Retrieve articles in all journals with MSC: 22C05, 22E30

Additional Information

DOI:
https://doi.org/10.1090/S0273-0979-1994-00514-2

Keywords:
Gelfand pairs,
Heisenberg group,
Orbit Method,
moment map

Article copyright:
© Copyright 1994
American Mathematical Society