Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 1181197
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: R. Kotecky R. Dobrushin, and S. Shlosman
Title: Wulff construction, A global shape from local interaction
Additional book information: American Mathematical Society, Providence, RI, 1992, ix + 204 pp., US$130.00. ISBN 0-8218-4563-2.

References [Enhancements On Off] (What's this?)

  • [BM] J. Brothers and F. Morgan, The isoperimetric theorem for general integrands, Michigan Math. J. (to appear). MR 1297699 (95g:49080)
  • [B] H. Busemann, The isoperimetric problem for Minkowski area, Amer. J. Math 71 (1949), 743-762. MR 0031762 (11:200j)
  • [DP] B. Dacorogna and C. E. Pfister, Wulff theorem and best constant in Sobolev inequality, J. Math. Pures Appl. (9) 71 (1992), 97-118. MR 1170247 (94d:49070)
  • [D] A. Dinghas, Über einen Geometrischen Satz von Wulff fur die Gleichgewichtsform von Kristallen, Z. Kristall 105 (1944), 304-314 MR 0012454 (7:25d)
  • [F] I. Fonseca, The Wulff theorem revisited, Proc. Roy. Soc. London Ser. A 432 (1991), 125-145. MR 1116536 (92e:49053)
  • [FM] I. Fonseca and S. Muller, A uniqueness proof for the Wulff problem, Proc. Edinburgh Math. Soc. 119A (1991), 125-136. MR 1130601 (93c:49026)
  • [G] M. Gage, Evolving plane curves by curvature in relative geometries, Duke Math. J. 72 (1993), 441-466. MR 1248680 (94j:53001)
  • [GG] J. Gravner and D. Griffeath, Threshold growth dynamics, Trans. Amer. Math. Soc. 340 (1993), 837-870. MR 1147400 (94b:52006)
  • [H] C. Herring, The use of classical macroscopic concepts in surface energy problems, Structure and Properties of Solid Surfaces (R. Gomer, ed.), Univ. of Chicago Press, Chicago, 1952, pp. 5-73; Some theorems on the free energy of crystal surfaces, Phys. Rev. 28 (1951), 87-93.
  • [KS] M. Katsoulakis and P. E. Souganidis, Interacting particle systems and generalized evolution of fronts, Arch. Rational Mech. Anal. (in preparation). MR 1288808 (95h:82023)
  • [M] F. Morgan, Geometric measure theory. A beginner's guide, Academic Press, New York, 1988. MR 933756 (89f:49036)
  • [O] R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), 1182-1238. MR 0500557 (58:18161)
  • [P] C. E. Pfister, Long deviations and phase separation in the two-dimensional Ising model, Helv. Phys. Acta 64 (1991), 953-1054. MR 1149430 (93c:82011)
  • [R] R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, NJ, 1970. MR 0274683 (43:445)
  • [T] J. E. Taylor, Existence and structure of solutions to a class of nonelliptic variational problems, Sympos. Math., vol. 14, Academic Press, London, 1974, pp. 499-508; Unique structure of solutions to a class of nonelliptic variational problems, Proc. Sympos. Pure Math., vol. XXVII, Amer. Math. Soc., Providence, RI, 1974, pp. 481-489. MR 0420407 (54:8421)
  • [TCH] J. E. Taylor, J. W. Cahn, and C. A. Handwerker, Geometric models of crystal growth, Acta Met. Mat. 40 (1992), 1443-1474.
  • [W] G. Wulff, Zur frage der Geschwindigkeit des Wachstums und der Auflosung der Krystal-flachen, Z. Krist. 34 (1901), 449.

Review Information:

Reviewer: Jean E. Taylor
Journal: Bull. Amer. Math. Soc. 31 (1994), 291-296
DOI: https://doi.org/10.1090/S0273-0979-1994-00535-X
American Mathematical Society