Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

MathSciNet review: 1118378
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: V. V. Kozlov and D. V. Treshchev
Title: Billiards. A genetic introduction to the dynamics of systems with impacts
Additional book information: Amer. Math. Soc., Providence, RI, 1991, vii+171 pp. \ ISBN 0-8218-4550-0.

References [Enhancements On Off] (What's this?)

  • [B] V. Bangert, Mather sets for twist maps and geodesics on tori, Dynamics Reported 1 (1988), 1-56. MR 945963 (90a:58145)
  • [Bir] G. D. Birkhoff, Collected mathematical papers, Vol. 2, Dover, New York, 1968.
  • [CS] N. I. Chernov and Ya. G. Sinai, Ergodic properties of some systems of 2-dimensional discs and 3-dimensional spheres, Russian Math. Surveys 42 (1987), 181-207. MR 896880 (89c:58097)
  • [D] V. Donnay, Using integrability to produce chaos: Billiards with positive entropy, Comm. Math. Phys. 141 (1991), 225-257. MR 1133266 (93c:58111)
  • [K] R. Kołodziej, The rotation number of some transformation related to billiards in an ellipse, Studia Math. 81 (1985), 293-302. MR 808571 (87b:58048)
  • [KMS] S. Kerckhoff, H. Masur, and J. Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2) 124 (1986), 293-311. MR 855297 (88f:58122)
  • [LW] C. Liverani and M. P. Wojtkowski, Ergodicity in Hamiltonian systems, Dynamics Reported (to appear). MR 1346498 (96g:58144)
  • [T] S. Tabachnikov, Billiards, preprint, Univ. of Arkansas, 1994. MR 1328336 (96c:58134)
  • [W1] M. P. Wojtkowski, A system of one dimensional balls with gravity, Comm. Math. Phys. 126 (1990), 507-533. MR 1032871 (91h:58066)
  • [W2] -, The system of two spinning disks in the torus, Phys. D. 71 (1994), 430-439. MR 1264122 (95a:58105)
  • [W3] -, Principles for the design of billiards with nonvanishing Lyapunov exponents, Comm. Math. Phys. 105 (1986), 391-414. MR 848647 (87k:58165)
  • [W4] -, Systems of classical interacting particles with nonvanishing Lyapunov exponents, Lyapunov Exponents, Proceedings, Oberwolfach 1990 (L. Arnold, H. Crauel, and J.-P. Eckmann, eds.), Lecture Notes in Math., vol. 1486, Springer-Verlag, New York, 1991, pp. 243-262. MR 1178963 (93g:58088)

Review Information:

Reviewer: Maciej P. Wojtkowski
Journal: Bull. Amer. Math. Soc. 31 (1994), 298-301
American Mathematical Society