Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: \break T.~Kilpel\"ainen J.~Heinonen, and O.~Martio
Title: Nonlinear potential theory of degenerate elliptic equations
Additional book information: Oxford University Press, London, 1993, v+363 pp., US$70.00. ISBN 0-19-853669-0.

References [Enhancements On Off] (What's this?)

  • [1] H. Bauer, Harmonische Räume und ihre Potentialtheorie, Lecture Notes in Math., vol. 22, Springer-Verlag, Berlin, 1966. MR 0210916 (35:1801)
  • [2] M. Brelot, Familles de Perron et problème de Dirichlet, Acta Sci. Math. (Szeged) IX (1939), 133-153. MR 0000734 (1:121d)
  • [3] -, Lectures on potential theory, Tata Inst. Fund. Res. Lectures on Math. and Phys., no. 19, Tata Inst. Fund. Res., Bombay, 1960. MR 0118980 (22:9749)
  • [4] -, Sur le potentiel et les suites de fonctions sous-harmoniques, C. R. Acad. Sci. Paris Ser. I. Math. 207 (1938), 836-839.
  • [5] R. Caccioppoli, Sui teoremi d'esistenza di Riemann, Rend. Reale Accad. Sci. Fis. Mat. Napoli 4 (1934), 49-54.
  • [6] G. Cimmino, Sulle equazioni lineari alle derivate parziali del secondo ordine di tipo ellittico sopra una superficie chiusa, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1938), 73-96. MR 1556798
  • [7] C. Costantinescu and A. Cornea, Potential theory of harmonic spaces, Springer-Verlag, Berlin, 1972. MR 0419799 (54:7817)
  • [8] E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Reale Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 3 (1957), 25-43. MR 0093649 (20:172)
  • [9] J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren Math. Wiss., vol. 262, Springer-Verlag, New York, 1984. MR 731258 (85k:31001)
  • [10] N. Du Plessis, An introduction to potential theory, Oliver and Boyd, Edinburgh, 1970. MR 0435422 (55:8382)
  • [11] A. Eremenko and J. L. Lewis, Uniform limits of certain $ {\mathcal{A}}$-harmonic functions with applications to quasiregular mappings, Ann. Acad. Sci. Fenn., Ser. A I. Math. 16 (1991), 361-375. MR 1139803 (93b:35039)
  • [12] E. B. Fabes, C. E. Kenig, and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), 77-116. MR 643158 (84i:35070)
  • [13] B. Fuglede, Finely harmonic functions, Lecture Notes in Math., vol. 289, Springer-Verlag, Berlin, 1972. MR 0450590 (56:8883)
  • [14] F. Gehring, The $ {L^p}$-integrability of the partial derivatives of quasiconformal mappings, Acta Math. 130 (1973), 265-277. MR 0402038 (53:5861)
  • [15] L. L. Helms, Introduction to potential theory, Wiley-Interscience, New York, 1969. MR 0261018 (41:5638)
  • [16] D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. Math. 46 (1982), 80-147. MR 676988 (84d:31005b)
  • [17] O. D. Kellogg, Foundations of potential theory, Dover, New York, 1954.
  • [18] T. Kilpeläinen, Potential theory for supersolutions of degenerate elliptic equations, Indiana Univ. Math. J. 38 (1989), 253-275. MR 997383 (90e:35061)
  • [19] T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), 137-161. MR 1264000 (95a:35050)
  • [20] N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, Berlin, 1972. MR 0350027 (50:2520)
  • [21] P. Lindqvist and O. Martio, Two theorems of N. Wiener for solutions of quasilinear elliptic equations, Acta Math. 155 (1985), 153-171. MR 806413 (87g:35074)
  • [22] W. Littman, G. Stampacchia, and H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 43-77. MR 0161019 (28:4228)
  • [23] V. G Maz'ya, On the continuity at a boundary point of solutions of quasilinear elliptic equations, Vestnik Leningrad Univ. Math. 3 (1976), 225-242.
  • [24] J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591. MR 0159138 (28:2356)
  • [25] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931-954. MR 0100158 (20:6592)
  • [26] O. Perron, Eine neue Behandlung der ersten Randwertaufgabe fur $ \Delta u = 0$, Math. Z. 18 (1923), 42-54. MR 1544619
  • [27] S. Rickman, The analogue of Picard's theorem for quasiregular mappings in dimension three, Acta Math. 154 (1985), 195-242. MR 781587 (86h:30039)
  • [28] F. Riesz, Sur les fonctions subharmoniques et leur rapport à la théorie du potentiel. I, Acta Math. 48 (1926), 329-343. MR 1555229
  • [29] J. Serrin, Local behavior of solutions of quasilinear equations, Acta Math. 111 (1964), 247-302. MR 0170096 (30:337)
  • [30] S. L. Sobolev, On a theorem in functional analysis, Mat. Sb. 46 (1938), 471-497. (Russian)
  • [31] M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd., Tokyo, 1959. MR 0114894 (22:5712)
  • [32] H. Weyl, The method of orthogonal projection in potential theory, Duke Math. J. 7 (1940), 411-444. MR 0003331 (2:202a)
  • [33] N. Wiener, Certain notions in potential theory, J. Math. Phys. Mass. Inst. Tech. 3 (1924), 24-51.
  • [34] -, The Dirichlet problem, J. Math. Phys. Mass. Inst. Tech. 3 (1924), 127-146.
  • [35] -, Note on a paper by O. Perron, J. Math. Phys. Mass. Inst. Tech. 4 (1925), 21-32.
  • [36] V. A. Zorich, The theorem of M. A. Lavrent'ev on quasiconformal mappings in space, Mat. Sb. 74 (1967), 417-433. MR 0223569 (36:6617)

Review Information:

Reviewer: Nicola Garofalo
Journal: Bull. Amer. Math. Soc. 31 (1994), 318-327
DOI: https://doi.org/10.1090/S0273-0979-1994-00543-9
American Mathematical Society