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Overall the book is clearly written and will certainly be a useful reference

to anyone working in the field. There are many references, and some of those

are in Eastern bloc journals which may not be so familiar in the West. The

book is not produced in TgX but is nevertheless produced by a pleasant-to-read
word-processing system.
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It was the reading of a translation of Diophantus's books on arithmetic that

led Pierre de Fermât to found modern number theory and the study of what are

now called Diophantine equations. Diophantine equations are nothing more

than equations between polynomials in several variables, their Diophantineness

lying not in the nature of the equations but in that of the solutions being sought.

Diophantus and algebraic geometers like rational solutions, while Fermât and

his successors prefer integral solutions. Fermât himself is associated with two

important Diophantine equations, namely: the Fermât equation,

x"+y" = zn,

for which he claimed to have only the obvious solutions for n > 2 ; and the
so-called Pell equation,

x2 - Dy2 = 1,        D not a perfect square,

the name of which originates in an error of attribution on Leonhard Euler's
part.
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The Pell equation demonstrates dramatically the difference between the origi-

nal Diophantine programme of searching for positive rational solutions and the

newer Fermatian programme of searching for integral solutions. In response to

Fermat's challenge, Lord Brouncker quickly gave a parametric description of the

rational solutions but had a much harder time of it in the integral case. Eventu-

ally, he came up with an algorithm for the generation of the integral solutions

(an algorithm already known, incidentally, to the Hindu mathematicians a few

centuries earlier), but he was never able to prove the existence of solutions, i.e.,

that his algorithm always provided a solution. This was first done by Joseph

Louis Lagrange, today's preferred solution due in fact to Peter Gustav Lejeune

Dirichlet. Lagrange further went on to found the theory of quadratic forms,

a subject that found its highest expression in 1801 with Carl Friedrich Gauß's

publication of his Disquisitiones arithmeticae.

Following Gauß there were attempts to extend the work to quadratic forms

of more variables and to cubic forms. The former subject was first brought to

completion in 1972 by Carl Ludwig Siegel, and the latter subject is still inchoate.

Success beyond the third degree has been largely sporadic, with few general re-

sults until recently. In 1900 at the International Congress of Mathematicians in

Paris, David Hubert, looking forward to the coming century, proposed twenty-

three problems with which twentieth century mathematicians would have to

contend. The tenth on the list, commonly simply termed "Hubert's Tenth Prob-

lem", called for a general method to determine the solvability or unsolvability

in integers of Diophantine equations. With our current knowledge of the un-

solvability of this problem, it would be interesting to know why Hubert felt it

had a positive solution. Did it look like the Gaußian theory could extend indef-

initely to more and more variables and higher and higher degrees? Did he think

one could cut through all the details and give an abstract proof, in the way he

finished off the theory of invariants? Or was it just a manifestation of his faith

in the mathematician's ability to solve all problems he posed for himself—a

faith on which he was quite explicit? The actual statement of Hubert's Tenth
Problem is rather brief and uninformative:

10. Determination of the solvability of a Diophantine equation.

Given a diophantine equation with any number of unknown

quantities and with rational integral numerical coefficients: To

devise a process according to which it can be determined by a

finite number of operations whether the equation is solvable in
rational integers.

The twentieth century saw a great deal of work on Diophantine equations,

if not directly on Hubert's Tenth Problem. Among the early outstanding work

was that of Thue, Siegel, and Roth giving whole classes of equations that could

have only finitely many solutions. The bounds given, however, were on the

number of solutions and not the sizes, whence Thue et al. could not answer the

fundamental question of the existence of at least one solution. This was not

remedied until 1968 when Alan Baker gave effective (if unfeasibly large) upper

bounds on the sizes and, at least in principle, solved the existence problem.

One might also mention Thoralf Skolem and his p-adic method.   Skolem
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wrote a short monograph on Diophantine equations in the 1930s. This was

described by one prominent logician giving a series of talks on the history of
logic as the first systematic exposition of the subject. This is not exactly true;

one can point, for example, to a Dover reprint of two books by Carmichael for

an attempt to present a coherent account of the subject using the fact that the
solutions to certain Diophantine equations (such as the Pell equation) naturally

form multiplicative groups. Such partial success at coherency aside, the true

nature of the field was nicely summed up by Eric Temple Bell in his Development

of mathematics, published in the later 1930s:

Diophantus contented himself with special solutions of his prob-

lems; the majority of his numerous successors have done like-

wise, until diophantine analysis today is choked by a jungle of

trivialities bearing no resemblance to cultivated mathematics. It

is long past time that the standards of Diophantus be forgotten

though he himself be remembered with becoming reverence.

Of course, Bell should never be relied upon for historical facts, and he did love

to express extreme views; but his overall summary in the present case is not

that far off target. One has but to leaf through the second volume of L. E.

Dickson's History of the theory of numbers (available in Chelsea reprint) to see
the "jungle" that so appalled Bell. Even Mordell's book on the subject, with its

general results, has the appearance of a mixed bag of tricks.

The 1930s saw another development, initially unrelated to Diophantine anal-

ysis and Hubert's Tenth Problem. This was the birth of the Theory of Algo-

rithms or Effective Computability. The decade saw a number of researchers

offering analyses and definitions of computable functions. Because these vari-

ous definitions were routinely proven equivalent, logicians soon felt confident

enough to prove the unsolvability of various problems by effective means. Ini-

tially, these were problems in the theory of algorithms itself, then in logic, and

in the 1940s in logical areas of algebra—semi-Thue systems and word problems

for semigroups. In the 1950s, the word problem for groups was shown un-

solvable. For the most part, Diophantine equations were ignored by logicians.

Thoralf Skolem, who made contributions to both the theory of algorithms and

of Diophantine equations, when asked why he did not work on the problem,

wrote that it seemed an interesting one but that he had not gotten around to it
yet. He never would work on it.

The logical assault on Hubert's Tenth Problem began around 1950, the first

tentative papers appearing in the ensuing decade, the first major breakthrough

appearing in print in 1961, and the ultimate solution being published in 1970.

The first contributions were made by Julia Robinson and Martin Davis.

Robinson defined a relation R on natural numbers to be Diophantine if it
could be written in the form

R(x0,... , x„_i): 3yQ---ym-iP(xQ,... ,x„-i,y0,... ,ym-i) = 0,

where P is a polynomial with integral coefficients and yo, ... ,ym-\ range
over natural numbers. (Logicians prefer their Diophantine equations to have

nonnegative integral solutions, an inessential reformulation of the usual Ferma-

tian Diophantine problem.) Finding she could not exhibit many demonstrably
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Diophantine relations, she allowed exponentiation to enter into P to form expo-

nential Diophantine relations. She was able to show several interesting relations

to be exponential Diophantine, and she reduced the general problem of showing

all exponential Diophantine relations to be Diophantine to that of showing any

relation of roughly exponential growth to have a Diophantine graph. In this

reduction, she used the sequence of solutions to the special Pell equations

x2-(a2- l)y2= 1,        a>2.

Davis took a more logical approach. The theory of algorithms recognises
two basic types of sets of natural numbers, namely: recursive sets, for which an

algorithm determining membership exists, and recursively enumerable sets, for

which an algorithmic enumeration exists. There are recursively enumerable sets

which are not recursive. If every recursively enumerable set could be shown to

be Diophantine, then Hubert's Tenth Problem would have no effective solution.

The techniques Gödel developed in proving his famous Incompleteness Theo-

rems readily show that every recursively enumerable set can be written in the

form

3yoQ\yi ■ ■ ■ Qm-\ym-\P{x,yo, ■■■ ,ym-i) = 0,

where each Q¡ is either an existential quantifier or a bounded universal quanti-

fier, i.e., a quantifier of the form Vy, < yo • Davis simplified this representation

to the Davis Normal Form

3yVz <y3wQ---wm_x <yP(x,y, z,w0, ... , wm^x) = 0.

Within a few years, Robinson's husband Raphael showed one could take m = 4.

Towards the end of the 1950s, Hilary Putnam joined Davis. Together they

proved—modulo the unproved assumption of the existence of arbitrarily long

arithmetic progressions of prime numbers—the unsolvability of the exponential

Diophantine problem over the natural numbers. With Julia Robinson's help,

the unproven conjecture was bypassed. Together, Davis, Putnam, and Robinson

applied Robinson's exponential Diophantine relations to eliminate the single

bounded universal quantifier from the Davis Normal Form. Their proof was

published in 1961.
With the Davis-Putnam-Robinson Theorem, Robinson's reduction of the

problem of representing exponential Diophantine relations as Diophantine re-

lations to the special problem of giving a Diophantine representation of a sin-

gle relation of roughly exponential growth assumed a greater importance. The

1960s saw no progress in the construction of such a relation, merely a profusion

of further reductions based on it; for example, on the eve of the final solution,

Robinson showed it sufficient to prove the Diophantine nature of any infinite

set of prime numbers. In March 1970 the world of logic learned that the then

twenty-two-year-old Yuri Matiyasevich had shown the relation

to be Diophantine, where Fo, Fi, ... is the Fibonacci sequence. Very quickly,

a number of researchers adapted Matiyasevich's proof to give a direct proof of

the Diophantineness of the sequences of solutions to the special Pell equations

x2-{a2-\)y2 = 1,        a>2,

cited earlier.
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Matiyasevich's completion of the logical conquest of Hubert's Tenth Problem
was not the end of the story. There was more work to do, particularly, show the

unsolvability of Diophantine equations and exponential Diophantine equations

in a small number of variables, improve on Raphael Robinson's refinement of

the Davis Normal Form, search for newer and better coding techniques, and so

on. In all of this, Matiyasevich has been at the centre of research.

Matiyasevich's most important contribution since solving the problem has to

be his introduction of new exponential Diophantine coding techniques. With

such, he improved the initial Matiyasevich-Robinson small-number-of-variables

result from the algorithmic unsolvability of the general 13-variable Diophantine

problem to the algorithmic unsolvability of the 9-variable problem. He has also

shown the unsolvability of the general exponential Diophantine problem in three

variables. In further applying his new technique, he has given a direct proof of

the Davis-Putnam-Robinson Theorem and a proof of the existence of singlefold

exponential Diophantine representations of recursively enumerable sets.

A singlefold representation of a recursively enumerable set X would be one
of the form

xeX &3y0---ym-\ P{x,y0, ... , ym-i) = 0

&3\y0---ym-i P(x,y0,... ,ym_i) = 0,

where 3! asserts "there are unique". The existence of singlefold exponential

Diophantine representations of nonrecursive, recursively enumerable sets means

that there are classes of exponential Diophantine equations for which we can—

á la Thue, Siegel, and Roth—give effective bounds on the number of solutions

but for which there are no effective bounds on the sizes thereof. Thus, the

behaviour Baker ruled out for Thue et al. can and does occur in the exponential

Diophantine case. It remains an open problem whether such behaviour can

actually occur in the ordinary Diophantine case.

There has been enough progress in the field in the last twenty-odd years

to merit a systematic exposition of the subject. The reviewer gave such an

exposition a couple of years ago in the second chapter of his Logical number

theory I (Springer-Verlag, Heidelberg, 1991), and now Matiyasevich himself has

produced a volume on the subject. Of the two, Matiyasevich's exposition ought
to be accessible to a wider mathematical audience.

Following a brief historical preface by Martin Davis, the book starts off with

an introductory chapter giving the basic definitions and a few examples of Dio-

phantine relations. The real work begins in Chapter 2 with Matiyasevich's

proof that the graph of the exponential function is a Diophantine relation. The

proof uses the sequence of solutions to the Pell equation but not the Pell equa-

tion itself: Let ßo(a), ao(a), ß\ (a), ax (a), ... denote the sequence of pairs of
nonnegative solutions to the special Pell equation for a > 2 ; i.e., let

ßn(a)2-(a2-\)an(a)2 = l.

The sequence of successive ^-values, i.e., of successive elements of the a-
sequence, are characterised by another equation

x2 - axy + y2 = 1.
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The nonnegative solutions to this equation are just the pairs

x = an(a) and y = a„+i(a)   or   x = an+1(a) and y - a„{a).

Using this new equation allows one to ignore the ß -sequences altogether.

Chapter 3, entitled "Diophantine Coding", discusses a few tricks for encoding

finite sequences. There are the Cantor pairing function, Gödel's use of the Chi-

nese Remainder Theorem to code finite sequences, and è-adic or "positional

coding" of finite sequences. All three schemes are shown to be Diophantine

in nature; i.e., the graphs of their projection functions are shown to be Dio-

phantine relations. Via the è-adic coding the relation z = ( * ), defining the

binomial coefficients, is concluded to be Diophantine. It is at this point that

the obligatory prime-enumerating polynomial can be exhibited. More impor-

tant, however, Matiyasevich uses the binomial coefficients and an almost for-

gotten yet almost standard result of Eduard Kummer to show the Diophantine

nature of the relation asserting numbers coding sequences in different bases to

code the same sequence. Under older techniques, one would have to introduce

a bounded quantifier at this point and destroy the Diophantine nature of the

representation.

Chapter 4 gives some universal Diophantine equations, the existence of which

is usually established recursion theoretically. The constructions of this chapter

are purely number theoretical. From the existence of such an equation, a simple

diagonal argument yields the existence of a Diophantine set, the complement

of which is not Diophantine—a number-theoretic analogue (actually: reformu-

lation) of the existence of nonrecursive, recursively enumerable sets.

It is only at this point that mathematical logic has to enter explicitly into the

exposition. In Chapter 5 Matiyasevich introduces Turing machines to give for-

mal definitions of recursiveness and recursive enumerability and shows the Dio-

phantine relations to be precisely the recursively enumerable ones. For the logi-

cians, I note that the Diophantine simulation of Turing machines uses Matiya-

sevich's special è-adic coding and avoids the introduction of the bounded uni-

versal quantifiers of the more familiar Gödelian techniques. The closure of

the class of Diophantine relations under bounded quantification is established

in Chapter 6 by three different techniques, namely: demonstrating the closure

of the class of recursively enumerable sets under such quantification by the

construction of an appropriate Turing machine, the Davis-Putnam-Robinson

exponential Diophantine (hence: Diophantine) simulation of a single bounded

universal quantifier, and a new technique Matiyasevich calls summation. This

new technique is a bit daunting, but it is the core of the proof of the unsolvabil-

ity of exponential Diophantine equations in a small number of variables (and

is, in fact, used later in the book for just this purpose), and the reader is advised
not to skip it.

The rest of the book is devoted to the exploitation of the basic results, the

most important being the construction of the singlefold exponential Diophan-

tine representations of recursively enumerable sets, the three-variable exponen-

tial Diophantine result just cited, and the existence of algorithmically unsolv-

able problems in the calculus. Just about every application anyone has made

of Matiyasevich's Theorem is cited if not proven, and the bibliography is fairly
exhaustive.

Craig Smoryñski

Texas Tech University


