Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF
Book Information:

Author: Peter Kuchment
Title: Floquet theory for partial differential equations
Additional book information: Operator Theory Advances and Applications, vol. 60, Birkh\"auser Verlag, Basel and Boston, 1993, xiv+350 pp., US$108.50. ISBN 0-8176-2901-7.

References [Enhancements On Off] (What's this?)

  • [AGR1] J. Avron, A. Grossmann, and R. Rodriguez, Hamiltonians in one-electron theory of solids. I, Rep. Mathematical Phys. 5 (1974), no. 1, 113–120. MR 0413859
  • [AGR2] J. E. Avron, A. Grossmann, and R. Rodriguez, Spectral properties of reduced Bloch Hamiltonians, Ann. Physics 103 (1977), no. 1, 47–63. MR 0428990
  • [B1] F. Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern, Z. Phys. 52 (1929), 555-600.
  • [DK] Ju. L. Dalec′kiĭ and M. G. Kreĭn, Stability of solutions of differential equations in Banach space, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by S. Smith; Translations of Mathematical Monographs, Vol. 43. MR 0352639
  • [F1] G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques, Ann. Sci. École Norm. Sup. (2) 12 (1883), 47–88 (French). MR 1508722
  • [Ge] I. M. Gel′fand, Expansion in characteristic functions of an equation with periodic coefficients, Doklady Akad. Nauk SSSR (N.S.) 73 (1950), 1117–1120 (Russian). MR 0039154
  • [Ha] Philip Hartman, Ordinary differential equations, S. M. Hartman, Baltimore, Md., 1973. Corrected reprint. MR 0344555
  • [Hi] G. W. Hill, On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon, Acta Math. 8 (1886), no. 1, 1–36. MR 1554690, 10.1007/BF02417081
  • [Ho1] James S. Howland, Scattering theory for Hamiltonians periodic in time, Indiana Univ. Math. J. 28 (1979), no. 3, 471–494. MR 529679, 10.1512/iumj.1979.28.28033
  • [Ho2] -, Floquet operators with singular spectrum. I, Ann. Inst. H. Poincaré 49 (1989), 309-323.
  • [Ho3] -, Floquet operators with singular spectrum. II, Ann. Inst. H. Poincaré 49 (1989), 325-334.
  • [Ku] P. A. Kuchment, Floquet theory for partial differential equations, Uspekhi Mat. Nauk 37 (1982), no. 4(226), 3–52, 240 (Russian). MR 667973
  • [Mi] A. I. Miloslavskiĭ, On the Floquet theory for parabolic equations, Funkcional. Anal. i Priložen. 10 (1976), no. 2, 80–81 (Russian). MR 0473390
  • [MS] J. Massera and J. Schäffer, Differential equations and function spaces, Academic Press, New York, 1966.
  • [OK] Farouk Odeh and Joseph B. Keller, Partial differential equations with periodic coefficients and Bloch waves in crystals, J. Mathematical Phys. 5 (1964), 1499–1504. MR 0168924
  • [RS] Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0493421
  • [Sk] M. M. Skriganov, Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators, Trudy Mat. Inst. Steklov. 171 (1985), 122 (Russian). MR 798454
  • [Th] Lawrence E. Thomas, Time dependent approach to scattering from impurities in a crystal, Comm. Math. Phys. 33 (1973), 335–343. MR 0334766
  • [Ya] Kenji Yajima, Scattering theory for Schrödinger equations with potentials periodic in time, J. Math. Soc. Japan 29 (1977), no. 4, 729–743. MR 0470525

Review Information:

Reviewer: Evans M. Harrell II
Journal: Bull. Amer. Math. Soc. 32 (1995), 158-162